Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Food Res Int ; 195: 114884, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39277269

RESUMEN

In order to explore the application prospects of static magnetic field (SMF) combined with supercooling in meat preservation, this study proposed a novel method of supercooling assisted by a stationary magnetic field (SMF + supercooling) for the preservation of chilled pork, evaluating its cooling rate and quality changes (e.g., water holding capacity, color, pH, and TVB-N), as well as the evolution trend of the microbiota. The results showed that SMF + supercooling significantly (P < 0.05) improved the cooling rate of pork. Compared to chilling and supercooling, SMF + supercooling significantly delayed the increase of TVB-N and TVC on the 12th day of storage (P < 0.05). SMF + supercooling treatment achieves the maintenance of pork water-holding capacity by inhibiting water migration, reducing drip loss, cooking loss, and centrifugal loss of pork. The 16S rDNA bacteria flora analysis demonstrated that SMF + supercooling treatment reduced the relative abundance of spoilage bacteria such as Acinetobacter, Streptococcus, and Pseudomonas, delaying the deterioration of pork quality caused by microbial growth. The SMF + supercooling treatment can be considered a novel refrigeration preservation method that delays the deterioration of pork quality and extends its shelf life.


Asunto(s)
Frío , Almacenamiento de Alimentos , Campos Magnéticos , Animales , Porcinos , Almacenamiento de Alimentos/métodos , Conservación de Alimentos/métodos , Microbiología de Alimentos , Microbiota , Carne de Cerdo/microbiología , Carne de Cerdo/análisis , Bacterias/crecimiento & desarrollo , Bacterias/clasificación , Calidad de los Alimentos , Refrigeración , Concentración de Iones de Hidrógeno , Agua
2.
Food Chem ; 461: 140878, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39154461

RESUMEN

Prepared dishes are becoming an increasingly important part of diets, while most studies focus on the flavor. In this study, the moisture loss induced by structure changes of precooked beef during freezing-thawing-reheating process was investigated. The myowater trapped and released by 'myenteric channels' and 'water reservoir' were observed by integrated multiple microstructure and water distribution visual analysis. X-ray results showed an increase in total porosity and the close porosity transfer to open porosity during freezing-thawing-reheating. The weight loss of frozen-reheated (FR) and frozen-thawed-reheated (FTR) samples was 6.34% and 7.69%, respectively. Although freezing-thawing did not significantly affect the moisture loss, magnetic resonance image (MRI) showed that the 'free water' temporarily existed in interfibrous spaces after thawing and leaked out during reheating. Directly reheating avoided the myowater redistribution and muscle extension mediated, which reduced moisture loss. These results provide a reference for quality control of prepared dishes during the industrial supply chain.


Asunto(s)
Congelación , Agua , Agua/química , Agua/análisis , Bovinos , Animales , Manipulación de Alimentos/instrumentación , Control de Calidad , Calor , Culinaria
3.
Food Res Int ; 193: 114839, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39160042

RESUMEN

Meat quality (MQ) is unstable during cold chain logistics (CCL). Different technologies have been developed to enhance MQ during the CCL process, while most of them cannot cover all the links of the cold chain because of complex environment (especially transportation and distribution), compatibility issues, and their single effect. Electric fields (EFs) have been explored as a novel treatment for different food processing. The effects and potential advantages of EFs for biological cryopreservation have been reported in many publications and some commercial applications in CCL have been realized. However, there is still a lack of a systematic review on the effects of EFs on their quality attributes in meat and its applications in CCL. In this review, the potential mechanisms of EFs on meat physicochemical properties (heat and mass transfer and ice formation and melting) and MQ attributes during different CCL links (freezing, thawing, and refrigeration processes) were summarized. The current applications and limitations of EFs for cryopreserving meat were also discussed. Although high intensity EFs have some detrimental effects on the quality attributes in meat due to electroporation and electro-breakdown effect, EFs present good applicability opportunities in most CCL scenes that have been realized in some commercial applications. Future studies should focus on the biochemical reactions of meat to the different EFs parameters, and break the limitations on equipment, so as to make EFs techniques closer to usability in the production environment and realize cost-effective large-scale application of EFs on CCL.


Asunto(s)
Criopreservación , Carne , Refrigeración , Carne/análisis , Animales , Criopreservación/métodos , Conservación de Alimentos/métodos , Electricidad , Congelación , Calidad de los Alimentos , Manipulación de Alimentos/métodos , Almacenamiento de Alimentos/métodos , Frío
4.
Meat Sci ; 213: 109478, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38460233

RESUMEN

This study aimed to explore the mechanism of cooking intensity on the tenderness of stir-fried pork slices from the perspective of the changes in temperature distribution. Infrared thermal imaging was used to monitor the distribution of temperature. Results showed that the high-level heat (HH) treatment could improve tenderness. When the center temperature increased to 100 °C, the shear force of samples from the low-level heat (LH) group increased by around 3-fold, and HH reduced this upward trend. This result was mainly attributed to the shorter heating time undergone by the HH-treated samples compared to the LH treatment, which resulted in less structural shrinkage and faster passing through the protein denaturation interval of the samples. These changes alleviated temperature fluctuations caused by water loss. This explanation could be confirmed by the results of T2 relaxation time and Fourier transform-infrared spectroscopy (FT-IR). However, the LH treatment caused a slower rise in oil temperature due to more moisture migration, which required the samples to undergo longer thermal denaturation, leading to a deterioration in tenderness. Moreover, histological analysis revealed that the greater integrity of endomysium in the HH group inhibited water loss and oil absorption, which contributed to obtain low-fat meat products with higher tenderness. This study provides support for the industrialization of traditional pork cuisines using oil as the heating medium.


Asunto(s)
Culinaria , Calor , Animales , Porcinos , Calor/efectos adversos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Carne de Cerdo/análisis , Agua
5.
J Agric Food Chem ; 72(3): 1721-1733, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38206806

RESUMEN

Low-voltage electrostatic fields (LVEF) are recognized as a new technology that can improve the quality of frozen meat. To determine the extent to which LVEF assistance affects the quality of frozen pork for long-term storage, pork was frozen and stored at -18 and -38 °C for up to 5 months. Water-holding capacity, muscle microstructure, and protein properties were investigated after up to 5 months of frozen storage with and without LVEF assistance. In comparison to traditional -18 and -38 °C frozen storage, LVEF treatment inhibited water migration during frozen storage and thawing. As a result, thawing losses were reduced by 15.97% (-18 °C) and 3.38% (-38 °C) in LVEF-assisted compared to conventional freezing methods. LVEF helped to maintain the muscle fiber microstructure and reduce muscle protein denaturation by miniaturizing ice crystal formation by freezing. As a result of this study, LVEF is more suitable for freezing or short-term frozen storage, while a lower temperature plays a more significant role in long-term frozen storage.


Asunto(s)
Carne de Cerdo , Carne Roja , Animales , Porcinos , Congelación , Carne Roja/análisis , Conservación de Alimentos/métodos , Electricidad Estática , Agua/química
6.
Crit Rev Food Sci Nutr ; : 1-15, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37667834

RESUMEN

Supercooling can preserve food in its original fresh state below its ice point temperature without freezing. However, the supercooled state is unstable in thermodynamics, state breakdown can occur at any moment, resulting in irregular and larger ice crystals formation, leading to food tissue damage, and loss of quality and nutrients. While the effectiveness of supercooling preservation has been verified in the lab and pilot scale tests, the stability of the supercooled state of food remains an open question, posing a limitation for larger industrial-scale application of supercooling preservation. Based on this background, this review presents the instability mechanisms of supercooling preservation and summarizes the factors such as food properties (e.g., material size, food components, specific surface area, and surface roughness) and preservation circumstances (e.g., cooling rate, temperature variation, and mechanical disturbance) that influence the stability of the supercooled state of food. The review also discusses novel techniques for enhancing the supercooling capacity and their limitations (e.g., precise temperature control and magnetic field). Further studies are necessary to comprehensively evaluate the effects of influence factors and supercooling technologies on supercooling, realizing the true sense of 'no-crystal' food products under subzero temperature preservation conditions in commercial applications.


Supercooling can maximize the potential of low temperature in food preservation.Supercooled state of food is unstable, with many factors affecting its stability.The quality of foodstuffs with supercooled failure is unacceptable.Instability of supercooling limits its large application in food industry.Novel technologies are developed to enhance the state stability of food supercooling.

7.
Food Chem ; 423: 136348, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37201258

RESUMEN

This study aimed to determine the efficacy of star anise dietary fiber (SADF) in alleviating the oxidative damage of myofibrillar protein (MP) from the perspective of volatile components. SADF and SADF without essential oils (EOs) (NSADF) were added to oxidized MP. The addition of NSADF and SADF improved the water-holding capacity (WHC) and gel strength, with the 0.4% addition showing the highest values. Moreover, the WHC of MP from the SADF-treated group was significantly higher than that from the NSADF-treated group at the same dosage, suggesting that EOs in SADF improved the WHC through antioxidation. EOs in SADF prevented the attack of hydroxyl radicals on MP, increasing the ß-sheet level and decreasing the random coil level, which was supported by the results of FT-IR, carbonyl content, and sulfhydryl content. Limonene and anisaldehyde present in EOs played an antioxidant role, and anisaldehyde could scavenge free radicals through demethoxylation.


Asunto(s)
Illicium , Agua , Espectroscopía Infrarroja por Transformada de Fourier , Geles , Antioxidantes , Fibras de la Dieta
8.
Animals (Basel) ; 12(11)2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35681879

RESUMEN

The entropy weight method (EWM) was developed and used to integrate multiple quality indexes of pork to generate a comprehensive measure of quality. The Arrhenius equation and chemical kinetic reaction were used to fit and generate the shelf life prediction model. The pork was stored at the temperatures of 7 °C, 4 °C, 1 °C and -1 °C. Quality indexes, such as drip loss, color, shear force, pH, TAC, TVB-N and TBARS were measured. The results show that low temperatures effectively delay microbial growth and lipid oxidation. The regression coefficients (R2) for the comprehensive scores at each temperature were greater than 0.973 and the activation energy Ea was 9.7354 × 104 kJ mol-1. The predicted shelf life of pork stored at 7 °C, 4 °C, 1 °C and -1 °C was 4.35 d, 6.85 d, 10.88 d and 14.90 d, respectively. In conclusion, EWM is an effective method to predict the shelf life of chilled/supercooled pork.

9.
Food Chem ; 370: 131264, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34788949

RESUMEN

Supercooling can preserve beef without freezing damage, whereas maintaining the supercooled state is difficult. An innovative method of static magnetic field extended supercooling (SM-ES) was proposed to maintain the non-frozen state of beef. Effect of SM-ES (-4 °C + SMF) compared with refrigerated (4 °C), slow-frozen (-4 °C) and frozen (-18 °C) treatment on beef quality was investigated. Results demonstrated that SM-ES successfully preserved beef at -4 °C without ice nucleation for 14 days. The SEM images revealed that the microstructure of slow-frozen/frozen samples was damaged due to crystallizing, while the ice nucleation was not observed in SM-ES treated beef. Compared with refrigerated, slow-frozen and frozen treatment, the drip loss of SM-ES decreased by 21.9%, 47.8% and 30.9%, respectively. The lipid oxidation degree of beef decreased following SM-ES treatment. SM-ES treatment extended the shelf-life of beef for more than 6 days compared with refrigeration while prevented its crystallizing.


Asunto(s)
Metabolismo de los Lípidos , Refrigeración , Animales , Bovinos , Congelación , Campos Magnéticos , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA