Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.060
1.
BMC Ophthalmol ; 24(1): 204, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698303

BACKGROUND: Uveal melanoma (UVM) is a malignant intraocular tumor in adults. Targeting genes related to oxidative phosphorylation (OXPHOS) may play a role in anti-tumor therapy. However, the clinical significance of oxidative phosphorylation in UVM is unclear. METHOD: The 134 OXPHOS-related genes were obtained from the KEGG pathway, the TCGA UVM dataset contained 80 samples, served as the training set, while GSE22138 and GSE39717 was used as the validation set. LASSO regression was carried out to identify OXPHOS-related prognostic genes. The coefficients obtained from Cox multivariate regression analysis were used to calculate a risk score, which facilitated the construction of a prognostic model. Kaplan-Meier survival analysis, logrank test and ROC curve using the time "timeROC" package were conducted. The immune cell frequency in low- and high-risk group was analyzed through Cibersort tool. The specific genomic alterations were analyzed by "maftools" R package. The differential expressed genes between low- or high-risk group were analyzed and performed Gene Ontology (GO) and GSEA. Finally, we verified the function of CYC1 in UVM by gene silencing in vitro. RESULTS: A total of 9 OXPHOS-related prognostic genes were identified, including NDUFB1, NDUFB8, ATP12A, NDUFA3, CYC1, COX6B1, ATP6V1G2, ATP4B and NDUFB4. The UVM prognostic risk model was constructed based on the 9 OXPHOS-related prognostic genes. The prognosis of patients in the high-risk group was poorer than low-risk group. Besides, the ROC curve demonstrated that the area under the curve of the model for predicting the 1 to 5-year survival rate of UVM patients were all more than 0.88. External validation in GSE22138 and GSE39717 dataset revealed that these 9 genes could also be utilized to evaluate and predict the overall survival of patients with UVM. The risk score levels related to immune cell frequency and specific genomic alterations. The DEGs between the low- and high- risk group were enriched in tumor OXPHOS and immune related pathway. In vitro experiments, CYC1 silencing significantly inhibited UVM cell proliferation and invasion, induced cell apoptosis. CONCLUSION: In sum, a prognostic risk score model based on oxidative phosphorylation-related genes in UVM was developed to enhance understanding of the disease. This prognostic risk score model may help to find potential therapeutic targets for UVM patients. CYC1 acts as an oncogene role in UVM.


Biomarkers, Tumor , Melanoma , Oxidative Phosphorylation , Uveal Neoplasms , Humans , Uveal Neoplasms/genetics , Uveal Neoplasms/metabolism , Uveal Neoplasms/mortality , Melanoma/genetics , Melanoma/metabolism , Prognosis , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Male , Female , Gene Expression Regulation, Neoplastic , ROC Curve , Risk Assessment/methods , Middle Aged , Risk Factors , Gene Expression Profiling
2.
Angew Chem Int Ed Engl ; : e202407702, 2024 May 16.
Article En | MEDLINE | ID: mdl-38751355

The current bottleneck in the development of efficient photocatalysts for hydrogen evolution is the limited availability of high-performance acceptor units. Over the past nine years, dibenzo[b,d]thiophene sulfone (DBS) has been the preferred choice for the acceptor unit. Despite extensive exploration of alternative structures as potential replacements for DBS, a superior substitute remains elusive. In this study, a symmetry-breaking strategy was employed on DBS to develop a novel acceptor unit, BBTT-1SO. The asymmetric structure of BBTT-1SO proved beneficial for increasing multiple moment and polarizability. BBTT-1SO-containing polymers showed higher efficiencies for hydrogen evolution than their DBS-containing counterparts by up to 166%. PBBTT-1SO exhibited an excellent hydrogen evolution rate (HER) of 222.03 mmol g-1 h-1 and an apparent quantum yield of 27.5% at 500 nm. Transient spectroscopic studies indicated that the BBTT-1SO-based polymers facilitated electron polaron formation, which explains their superior HERs. PBBTT-1SO also showed 14% higher HER in natural seawater splitting than that in deionized water splitting. Molecular dynamics simulations highlighted the enhanced water-PBBTT-1SO polymer interactions in salt-containing solutions. This study presents a pioneering example of a substitute acceptor unit for DBS in the construction of high-performance photocatalysts for hydrogen evolution.

3.
Ecol Evol ; 14(5): e11424, 2024 May.
Article En | MEDLINE | ID: mdl-38779531

Monostroma nitidum, a monostromatic green algae (MGA) with high economic value, is distributed worldwide. Life cycle often serves as a fundamental criterion for taxonomic classification. Most researchers consider the life cycle of M. nitidum to involve dimorphic alternation of generations, although the possibility of a monomorphic asexual life cycle remains unclear. In this study, tufA and 18S rDNA sequences were employed as molecular markers, complemented by morphological analysis, to classify and identify MGA in two distinct habitats: Hailing Island reefs (YJ) and Naozhou Island reefs (ZJ). The results of tufA and 18S rDNA sequence analysis revealed that all samples from YJ and ZJ clustered to the same branch (M. nitidum clade) with high bootstrap support and genetic distances of less than 0.000 and 0.005, respectively. However, morphological observations indicated significant differences in the external morphology of the YJ and ZJ samples, although both initially exhibited a filament-blade form during early development. The life cycle of the ZJ samples exhibited typical dimorphic alternation of generations, whereas the YJ samples only produced biflagellate asexual gametes with negative phototaxis. Gametes of the YJ samples directly developed into new gametophytes without undergoing the sporophyte stage. Consequently, the YJ and ZJ samples were classified as monomorphic asexual and dimorphic sexual M. nitidum, respectively. These findings provide evidence supporting the monomorphic asexual life cycle of M. nitidum for the classification of MGA.

4.
Chemosphere ; 361: 142452, 2024 May 27.
Article En | MEDLINE | ID: mdl-38810804

CuCoFe-LDO/BCD was successfully synthesized from CuCoFe-LDH and biochar derived from durian shell (BCD). Ciprofloxacin (CFX) degraded more than 95% mainly by O2•- and 1O2 in CuCoFe-LDO/BCD(2/1)/PMS system within 10 min with a rate constant of 0.255 min-1, which was 14.35 and 2.66 times higher than those in BCD/PMS and CuCoFe-LDO/PMS systems, respectively. The catalytic system exhibited good performance over a wide pH range (3-9) and high degradation efficiency of other antibiotics. Built-in electric field (BIEF) driven by large difference in the work function/Fermi level ratio between CuCoFe-LDO and BCD accelerated continuous electron transfer from CuCoFe-LDO to BCD to result in two different microenvironments with opposite charges at the interface, which enhanced PMS adsorption and activation via different directions. As a non-radical, 1O2 was mainly generated via PMS activation by C=O in BCD. The presence of C=O in BCD resulted in an increase in atomic charge of C in C=O and redistributed the charge density of other C atoms. As a result, strong adsorption of PMS at C atom in C=O and other C with a high positive charge was favorable for 1O2 generation, whereas an enhanced adsorption of PMS at negatively charged C accounted for the generation of •OH and SO4•-. After adsorption, electrons in C of BCD became deficient and were fulfilled with those transferred from CuCoFe-LDO driven by BIEF, which ensured the high catalytic activity of CuCoFe-LDO/BCD. O2•-, on the other hand, was generated via several pathways that involved in the transformation of •OH and SO4•- originated from PMS activation by the transition of metal species in CuCoFe-LDO and negatively charged C in BCD. This study proposed a new idea of fabricating a low-cost metal-LDH and biomass-derived catalyst with a strong synergistic effect induced by BIEF for enhancing PMS activation and antibiotic degradation.

5.
Appl Radiat Isot ; 209: 111335, 2024 Jul.
Article En | MEDLINE | ID: mdl-38704881

This study explored the treatment of Leucomalachite Green (LMG) solutions using an electron beam and sodium persulfate (Na2S2O8), employing Box-Behnken design (BBD) to optimize operational variables such as absorbed dose, initial pH and Na2S2O8 concentration. The findings highlighted an optimal absorbed dose of 4.5 kGy, a Na2S2O8 concentration of 1.0 mM, and an initial pH of 6, leading to a remarkable 97.77% removal of LMG. The adjusted R2 for the model indicated a close match of 1.4% between predicted and actual outcomes under these optimized conditions, affirming the quadratic model's suitability for predicting the LMG removal process using combined EB and Na2S2O8. To assess the environmental impact of the LMG treatment, the study applied SimaPro 9.4 with the TRACI tool, examining ten distinct environmental impact categories. The results unveiled that deionized water and Na2S2O8 exhibited a notable impact on global warming (GW) and ecotoxicity (ET) in controlled laboratory settings. Furthermore, a comparative analysis of four scenarios shed light on the environmental implications of different energy sources. Notably, electricity generated from waste incineration demonstrated a substantial influence on all environmental indicators. In contrast, natural gas emerged as the cleanest source for electricity generation, offering a promising avenue for reducing environmental impacts. This study presents a practical method for addressing dye contaminants through the employment of EB in conjunction with Na2S2O8, with potential implications for broader applications.

6.
Nano Lett ; 24(21): 6269-6277, 2024 May 29.
Article En | MEDLINE | ID: mdl-38743874

Accurately decoding the three-dimensional atomic structure of surface active sites is essential yet challenging for a rational catalyst design. Here, we used comprehensive techniques combining the pair distribution function and reverse Monte Carlo simulation to reveal the surficial distribution of Pd active sites and adjacent coordination environment in palladium-copper nanoalloys. After the fine-tuning of the atomic arrangement, excellent catalytic performance with 98% ethylene selectivity at complete acetylene conversion was obtained in the Pd34Cu66 nanocatalysts, outperforming most of the reported advanced catalysts. The quantitative deciphering shows a large number of active sites with a Pd-Pd coordination number of 3 distributed on the surface of Pd34Cu66 nanoalloys, which play a decisive role in highly efficient semihydrogenation. This finding not only opens the way for guiding the precise design of bimetal nanocatalysts from atomic-level insight but also provides a method to resolve the spatial structure of active sites.

7.
Heliyon ; 10(10): e31178, 2024 May 30.
Article En | MEDLINE | ID: mdl-38799756

The routine use of extracorporeal cardiopulmonary resuscitation (ECPR) is not recommended for patients with cardiac arrest. However, ECPR is considered for selected patients with cardiac arrest of reversible cause. Extracorporeal membrane oxygenation (ECMO) provides temporary cardiopulmonary support and adequate perfusion to the end organs, thereby shortening ischemic organ time and minimizing complications. One indication for ECPR therapy is prolonged ventricular fibrillation despite optimal conventional CPR. Here, we report a successful recovery case from ECPR, in which the patient suffered from refractory ventricular fibrillation and was predisposed to severe hyperkalemia. Ventricular fibrillation failed to respond despite prolonged conventional CPR and defibrillation management for 32 min. After successfully initiating ECPR 54 min after cardiac arrest, spontaneous circulation returned sooner. He demonstrated clear consciousness after treatment and was discharged without any neurological disability on day 11.

8.
Proc Natl Acad Sci U S A ; 121(15): e2320505121, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38568977

The presynaptic SNARE-complex regulator complexin (Cplx) enhances the fusogenicity of primed synaptic vesicles (SVs). Consequently, Cplx deletion impairs action potential-evoked transmitter release. Conversely, though, Cplx loss enhances spontaneous and delayed asynchronous release at certain synapse types. Using electrophysiology and kinetic modeling, we show that such seemingly contradictory transmitter release phenotypes seen upon Cplx deletion can be explained by an additional of Cplx in the control of SV priming, where its ablation facilitates the generation of a "faulty" SV fusion apparatus. Supporting this notion, a sequential two-step priming scheme, featuring reduced vesicle fusogenicity and increased transition rates into the faulty primed state, reproduces all aberrations of transmitter release modes and short-term synaptic plasticity seen upon Cplx loss. Accordingly, we propose a dual presynaptic function for the SNARE-complex interactor Cplx, one as a "checkpoint" protein that guarantees the proper assembly of the fusion machinery during vesicle priming, and one in boosting vesicle fusogenicity.


Synapses , Synaptic Vesicles , Synapses/metabolism , Synaptic Vesicles/metabolism , Action Potentials , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , SNARE Proteins/genetics , SNARE Proteins/metabolism , Synaptic Transmission/physiology
9.
EJNMMI Radiopharm Chem ; 9(1): 27, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38563872

BACKGROUND: Tau pathology plays a crucial role in neurodegeneration diseases including Alzheimer's disease (AD) and non-AD diseases such as progressive supranuclear palsy. Tau positron emission tomography (PET) is an in-vivo and non-invasive medical imaging technique for detecting and visualizing tau deposition within a human brain. In this work, we aim to investigate the biodistribution of the dosimetry in the whole body and various organs for the [18F]Florzolotau tau-PET tracer. A total of 12 healthy controls (HCs) were enrolled at Chang Gung Memorial Hospital. All subjects were injected with approximately 379.03 ± 7.03 MBq of [18F]Florzolotau intravenously, and a whole-body PET/CT scan was performed for each subject. For image processing, the VOI for each organ was delineated manually by using the PMOD 3.7 software. Then, the time-activity curve of each organ was acquired by optimally fitting an exponential uptake and clearance model using the least squares method implemented in OLINDA/EXM 2.1 software. The absorbed dose for each target organ and the effective dose were finally calculated. RESULTS: From the biodistribution results, the elimination of [18F]Florzolotau is observed mainly from the liver to the intestine and partially through the kidneys. The highest organ-absorbed dose occurred in the right colon wall (255.83 µSv/MBq), and then in the small intestine (218.67 µSv/MBq), gallbladder wall (151.42 µSv/MBq), left colon wall (93.31 µSv/MBq), and liver (84.15 µSv/MBq). Based on the ICRP103, the final computed effective dose was 34.9 µSv/MBq with CV of 10.07%. CONCLUSIONS: The biodistribution study of [18F]Florzolotau demonstrated that the excretion of [18F]Florzolotau are mainly through the hepatobiliary and gastrointestinal pathways. Therefore, a routine injection of 370 MBq or 185 MBq of [18F]Florzolotau leads to an estimated effective dose of 12.92 or 6.46 mSv, and as a result, the radiation exposure to the whole-body and each organ remains within acceptable limits and adheres to established constraints. TRIAL REGISTRATION: Retrospectively Registered at Clinicaltrials.gov (NCT03625128) on 12 July, 2018, https://clinicaltrials.gov/study/NCT03625128 .

10.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(5): 622-625, 2024 May 10.
Article Zh | MEDLINE | ID: mdl-38684313

OBJECTIVE: To carry out invasive prenatal diagnosis for a fetus with ultrasound-indicated agenesis of corpus callosum and explore its genetic etiology. METHODS: A pregnant woman presented at the Affiliated Hospital of Putian College on December 16, 2022 was selected as the study subject. Amniotic fluid and peripheral blood samples from the fetus and the couple were collected. Conventional G-banded chromosomal karyotyping was carried out, and whole-genome copy number variation analysis was performed using single nucleotide polymorphism microarray (SNP-array). RESULTS: The karyotypes of the fetus and the couple were normal by the G-banding analysis. SNP-array analysis of the amniotic fluid sample revealed a 4.5 Mb microdeletion in the 18q21.2q21.31 region of the fetus. SNP-array analysis of peripheral blood samples from the couple did not find any abnormality. CONCLUSION: Through G-banded chromosomal karyotyping and SNP-array analysis, a fetus with 18q21.2q21.31 microdeletion was identified, which has conformed to the diagnosis of Pitt-Hopkins syndrome. Above finding has provided a basis for genetic counseling for the couple.


Chromosome Deletion , Chromosomes, Human, Pair 18 , Hyperventilation , Intellectual Disability , Karyotyping , Humans , Female , Pregnancy , Intellectual Disability/genetics , Chromosomes, Human, Pair 18/genetics , Adult , Hyperventilation/genetics , Polymorphism, Single Nucleotide , Prenatal Diagnosis , Fetus/abnormalities , Facies , Chromosome Banding , DNA Copy Number Variations
11.
Environ Res ; 252(Pt 2): 118919, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38631468

The escalation of global water pollution due to emerging pollutants has gained significant attention. To address this issue, catalytic peroxymonosulfate (PMS) activation technology has emerged as a promising treatment approach for effectively decontaminating a wide range of pollutants. Recently, modified biochar has become an increasingly attractive as PMS activator. Metal-heteroatom-co-doped biochar (MH-BC) has emerged as a promising catalyst that can provide enhanced performance over heteroatom-doped and metal-doped biochar due to the synergism between metal and heteroatom in promoting PMS activation. Therefore, this review aims to discuss the fabrication pathways (i.e., internal vs external doping and pre-vs post-modification) and key parameters (i.e., source of precursors, synthesis methods, and synthesis conditions) affecting the performance of MH-BC as PMS activator. Subsequently, an overview of all the possible PMS activation pathways by MH-BC is provided. Subsequently, Also, the detection, identification, and quantification of several reactive species (such as, •OH, SO4•-, O2•-, 1O2, and high valent oxo species) generated in the catalytic PMS system by MH-BC are also evaluated. Lastly, the underlying challenges associated with poor stability, the lack of understanding regarding the interaction between metal and heteroatom during PMS activation and quantification of radicals in multi-ROS system are also deliberated.


Charcoal , Environmental Restoration and Remediation , Peroxides , Charcoal/chemistry , Peroxides/chemistry , Environmental Restoration and Remediation/methods , Catalysis , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Metals/chemistry
12.
Environ Res ; 252(Pt 3): 118990, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38670214

This study aimed to investigate bone char's physicochemical transformations through co-torrefaction and co-pyrolysis processes with biomass. Additionally, it aimed to analyze the carbon sequestration process during co-torrefaction of bone and biomass and optimize the process parameters of co-torrefaction. Finally, the study sought to evaluate the arsenic sorption capacity of both torrefied and co-torrefied bone char. Bone and biomass co-torrefaction was conducted at 175 °C-300 °C. An orthogonal array of Taguchi techniques and artificial neural networks (ANN) were employed to investigate the influence of various torrefaction parameters on carbon dioxide sequestration within torrefied bone char. A co-torrefied bone char, torrefied at a reaction temperature of 300 °C, a heating rate of 15 °C·min-1, and mixed with 5 g m of biomass (wood dust), was selected for the arsenic (III) sorption experiment due to its elevated carbonate content. The results revealed a higher carbonate fraction (21%) in co-torrefied bone char at 300 °C compared to co-pyrolyzed bone char (500-700 °C). Taguchi and artificial neural network (ANN) analyses indicated that the relative impact of process factors on carbonate substitution in bone char followed the order of co-torrefaction temperature (38.8%) > heating rate (31.06%) > addition of wood biomass (30.1%). Co-torrefied bone chars at 300 °C exhibited a sorption capacity of approximately 3 mg g-1, surpassing values observed for pyrolyzed bone chars at 900 °C in the literature. The findings suggest that co-torrefied bone char could serve effectively as a sorbent in filters for wastewater treatment and potentially fulfill roles such as a remediation agent, pH stabilizer, or valuable source of biofertilizer in agricultural applications.


Arsenic , Biomass , Charcoal , Wastewater , Water Pollutants, Chemical , Arsenic/analysis , Arsenic/chemistry , Charcoal/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Adsorption , Bone and Bones/chemistry , Neural Networks, Computer , Animals , Pyrolysis
13.
Nanoscale ; 16(13): 6708-6719, 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38488127

Hypertrophic scar (HS) is characterized by an abnormal fibroblast-myofibroblast transformation; non-apoptosis of fibroblasts; and redundant expression of TGF-ß1, VEGF, α-SMA, and collagen I/III. An HS affects patients' physical and psychological quality of life, leading to joint dysfunction and skin cancer. However, there is currently no satisfactory drug to treat this disorder. In this study, we constructed methylprednisolone sodium succinate (MPSS) encapsulated ZIF-90 (MPSS@ZIF-90) for the effective treatment of an HS. The encapsulation of MPSS in ZIF-90 can achieve the controllable drug release of MPSS and prolong its effective treatment time. MPSS@ZIF-90 enhanced the apoptosis of human hypertrophic scar fibroblasts and downregulated the overexpression of TGF-ß1, VEGF, α-SMA, and collagen I/III both in vitro and in vivo. The instant injection of MPSS@ZIF-90 effectively intervened with the formation of the HS after 28 days. On the contrary, MPSS@ZIF-90 greatly reduced the HS with two injections and 14 days of treatment after the HS was formed. This work provides evidence of effective intervention in the formation of an HS and the therapeutic effectiveness of MPSS@ZIF-90 with short treatment periods in vivo. It suggests that MPSS@ZIF-90 can be used as a biomedical option in the treatment of skin wounds and may reveal the potential molecular basis for promising future antifibrotic agents against scarring.


Cicatrix, Hypertrophic , Metal-Organic Frameworks , Nanoparticles , Humans , Cicatrix, Hypertrophic/drug therapy , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/pharmacology , Transforming Growth Factor beta1/therapeutic use , Methylprednisolone Hemisuccinate/metabolism , Methylprednisolone Hemisuccinate/pharmacology , Methylprednisolone Hemisuccinate/therapeutic use , Quality of Life , Vascular Endothelial Growth Factor A/metabolism , Fibroblasts/metabolism , Collagen Type I
14.
Clin Nucl Med ; 49(5): 387-396, 2024 May 01.
Article En | MEDLINE | ID: mdl-38465965

BACKGROUND: Progressive supranuclear palsy (PSP) is a tauopathy that involves subcortical regions but also extends to cortical areas. The clinical impact of different tau protein sites and their influence on glymphatic dysfunction have not been investigated. PATIENTS AND METHODS: Participants (n = 55; 65.6 ± 7.1 years; 29 women) with PSP (n = 32) and age-matched normal controls (NCs; n = 23) underwent 18 F-Florzolotau tau PET, MRI, PSP Rating Scale (PSPRS), and Mini-Mental State Examination. Cerebellar gray matter (GM) and parametric estimation of reference signal intensity were used as references for tau burden measured by SUV ratios. Glymphatic activity was measured by diffusion tensor image analysis along the perivascular space (DTI-ALPS). RESULTS: Parametric estimation of reference signal intensity is a better reference than cerebellar GM to distinguish tau burden between PSP and NCs. PSP patients showed higher cortical and subcortical tau SUV ratios than NCs ( P < 0.001 and <0.001). Cortical and subcortical tau deposition correlated with PSPRS, UPDRS, and Mini-Mental State Examination scores (all P 's < 0.05). Cortical tau deposition was further associated with the DTI-ALPS index and frontal-temporal-parietal GM atrophy. The DTI-ALPS indexes showed a significantly negative correlation with the PSPRS total scores ( P < 0.01). Finally, parietal and occipital lobe tau depositions showed mediating effects between the DTI-ALPS index and PSPRS score. CONCLUSIONS: Cortical tau deposition is associated with glymphatic dysfunction and plays a role in mediating glymphatic dysfunction and clinical severity. Our results provide a possible explanation for the worsening of clinical severity in patients with PSP.


Supranuclear Palsy, Progressive , tau Proteins , Humans , Female , tau Proteins/metabolism , Supranuclear Palsy, Progressive/metabolism , Magnetic Resonance Imaging , Image Processing, Computer-Assisted
15.
J Orthop Surg Res ; 19(1): 183, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38491545

Osteonecrosis of the femoral head (ONFH) is a elaborate hip disease characterized by collapse of femoral head and osteoarthritis. RNA N6-methyladenosine (m6A) plays a crucial role in a lot of biological processes within eukaryotic cells. However, the role of m6A in the regulation of ONFH remains unclear. In this study, we identified the m6A regulators in ONFH and performed subtype classification. We identified 7 significantly differentially expressed m6A regulators through the analysis of differences between ONFH and normal samples in the Gene Expression Omnibus (GEO) database. A random forest algorithm was employed to monitor these regulators to assess the risk of developing ONFH. We constructed a nomogram based on these 7 regulators. The decision curve analysis suggested that patients can benefit from the nomogram model. We classified the ONFH samples into two m6A models according to these 7 regulators through consensus clustering algorithm. After that, we evaluated those two m6A patterns using principal component analysis. We assessed the scores of those two m6A patterns and their relationship with immune infiltration. We observed a higher m6A score of type A than that of type B. Finally, we performed a cross-validation of crucial m6A regulatory factors in ONFH using external datasets and femoral head bone samples. In conclusion, we believed that the m6A pattern could provide a novel diagnostic strategy and offer new insights for molecularly targeted therapy of ONFH.


Adenine/analogs & derivatives , Femur Head Necrosis , Femur Head , Humans , Femur , Femur Head Necrosis/genetics , Methylation
16.
Environ Sci Pollut Res Int ; 31(18): 26773-26789, 2024 Apr.
Article En | MEDLINE | ID: mdl-38456975

In this study, CoCr layered double hydroxide material (CoCr-LDH) was prepared and used as an effective catalyst for peroxymonosulfate (PMS) activation to degrade organics in water. The prepared CoCr-LDH material had a crystalline structure and relatively porous structure, as determined by various surface analyses. In Rhodamine B (RhB) removal, the most outstanding PMS activation ability belongs to the material with a Co:Cr molar ratio of 2:1. The removal of RhB follows pseudo-first-order kinetics (R2 > 0.99) with an activation energy of 38.23 kJ/mol and efficiency of 98% after 7 min of treatment, and the total organic carbon of the solution reduced 47.2% after 10 min. The activation and oxidation mechanisms were proposed and the RhB degradation pathways were suggested with the key contribution of O2•- and 1O2. Notably, CoCr-LDH can activate PMS over a wide pH range of 4 - 9, and apply to a wide range of organic pollutants and aqueous environments. The material has high stability and good recovery, which can be reused for 5 cycles with a stable efficiency of above 88%, suggesting a high potential for practical recalcitrant water treatment via PMS activation by heterogeneous catalysts.


Peroxides , Water Pollutants, Chemical , Water Purification , Water Pollutants, Chemical/chemistry , Peroxides/chemistry , Water Purification/methods , Rhodamines/chemistry , Kinetics , Oxidation-Reduction , Catalysis
17.
Nat Commun ; 15(1): 2252, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38480744

Zero thermal expansion (ZTE) alloys with high mechanical response are crucial for their practical usage. Yet, unifying the ZTE behavior and mechanical response in one material is a grand obstacle, especially in multicomponent ZTE alloys. Herein, we report a near isotropic zero thermal expansion (αl = 1.10 × 10-6 K-1, 260-310 K) in the natural heterogeneous LaFe54Co3.5Si3.35 alloy, which exhibits a super-high toughness of 277.8 ± 14.7 J cm-3. Chemical partition, in the dual-phase structure, assumes the role of not only modulating thermal expansion through magnetic interaction but also enhancing mechanical properties via interface bonding. The comprehensive analysis reveals that the hierarchically synergistic enhancement among lattice, phase interface, and heterogeneous structure is significant for strong toughness. Our findings pave the way to tailor thermal expansion and obtain prominent mechanical properties in multicomponent alloys, which is essential to ultra-stable functional materials.

18.
Chem Sci ; 15(10): 3721-3729, 2024 Mar 06.
Article En | MEDLINE | ID: mdl-38455009

Overcoming thermal quenching is generally essential for the practical application of luminescent materials. It has been recently found that frameworks with negative thermal expansion (NTE) could be a promising candidate to engineer unconventional luminescence thermal enhancement. However, the mechanism through which luminescence thermal enhancement can be well tuned remains an open issue. In this work, enabled by altering ligands in a series of UiO-66 derived Eu-based metal-organic frameworks, it was revealed that the changes in the thermal expansion are closely related to luminescence thermal enhancement. The NTE of the aromatic ring part favors luminescence thermal enhancement, while contraction of the carboxylic acid part plays the opposite role. Modulation of functional groups in ligands can change the thermal vibration of aromatic rings and then achieve luminescence thermal enhancement in a wide temperature window. Our findings pave the way to manipulate the NTE and luminescence thermal enhancement based on ligand engineering.

19.
Asian J Surg ; 47(5): 2188-2194, 2024 May.
Article En | MEDLINE | ID: mdl-38383186

BACKGROUND: We aimed to assess the prognostic importance of perinephric fat features in images of patients with non-metastatic renal cell carcinoma (RCC) undergoing surgery. METHODS: We enrolled RCC patients who underwent surgical treatment between 2011 and 2019. Two characteristics, including perinephric fat thickness and perinephric fat stranding, were evaluated using preoperative computed tomography or magnetic resonance images. The association between perinephric fat characteristics and disease progression was examined by Kaplan-Meier survival analysis and Cox regression model. RESULTS: In a multivariate Cox proportional hazards model adjusting for tumor stage, intratumoral necrosis, and neutrophil-to-lymphocyte ratio, we found that patients in the thin perinephric fat group (<1 cm) had a poorer progression-free survival (PFS) compared to the thick perinephric fat group (≥1 cm) (HR 2.8; 95% CI 1.175-6.674, p = 0.02). Additionally, the fat stranding group had a poorer PFS than the non-stranding group (HR 3.852; 95% CI 1.082-13.704, p = 0.037). The non-stranding with thick perinephric fat group exhibits the highest cumulative PFS while the stranding with thin perinephric fat group has the lowest cumulative PFS. In receiver operating characteristic curve analysis, combing these two perinephric fat characteristics with tumor stage can achieve a better discriminatory power than tumor stage alone. CONCLUSIONS: Our study indicates that the evaluation of image-based perinephric fat features is a simple, straightforward, reproducible tool for predicting RCC prognosis and may assist in preoperative risk stratification.


Adipose Tissue , Carcinoma, Renal Cell , Kidney Neoplasms , Magnetic Resonance Imaging , Tomography, X-Ray Computed , Humans , Carcinoma, Renal Cell/surgery , Carcinoma, Renal Cell/diagnostic imaging , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/mortality , Kidney Neoplasms/surgery , Kidney Neoplasms/diagnostic imaging , Kidney Neoplasms/pathology , Kidney Neoplasms/mortality , Male , Female , Middle Aged , Prognosis , Aged , Adipose Tissue/diagnostic imaging , Preoperative Period , Nephrectomy/methods , Retrospective Studies , Proportional Hazards Models , Adult , Kaplan-Meier Estimate
20.
Front Neurosci ; 18: 1269577, 2024.
Article En | MEDLINE | ID: mdl-38389789

Stem cells offer new therapeutic avenues for the repair and replacement of damaged tissues and organs owing to their self-renewal and multipotent differentiation capabilities. In this paper, we conduct a systematic review of the characteristics of various types of stem cells and offer insights into their potential applications in both cellular and cell-free therapies. In addition, we provide a comprehensive summary of the technical routes of stem cell therapy and discuss in detail current challenges, including safety issues and differentiation control. Although some issues remain, stem cell therapy demonstrates excellent potential in the field of regenerative medicine and provides novel tactics and methodologies for managing a wider spectrum of illnesses and traumas.

...