Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(7): e202317935, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38117662

RESUMEN

An emerging class of C-C coupling transformations that furnish drug-like building blocks involves catalytic hydrocarbonation of alkenes. However, despite notable advances in the field, hydrocarbon addition to gem-difluoroalkenes without additional electronic activation remains largely unsuccessful. This owes partly to poor reactivity and the propensity of difluoroalkenes to undergo defluorinative side reactions. Here, we report a nickel catalytic system that promotes efficient 1,2-selective hydroarylation and hydroalkenylation, suppressing defluorination and providing straightforward access to a diverse assortment of prized organofluorides bearing difluoromethyl-substituted carbon centers. In contrast to radical-based pathways and reactions triggered by hydrometallation via a nickel-hydride complex, our experimental and computational studies support a mechanism in which a catalytically active nickel-bromide species promotes selective carbonickelation with difluoroalkenes followed by alkoxide exchange and hydride transfer, effectively overcoming the difluoroalkene's intrinsic electronic bias.

2.
Acc Chem Res ; 56(22): 3292-3312, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37917928

RESUMEN

ConspectusEfficient construction of ubiquitous carbon-carbon bonds between two electrophiles has garnered interest in recent decades, particularly if it is mediated by nonprecious, first-row transition metals. Reductive coupling has advantages over traditional cross-coupling by obviating the need for stoichiometric air- and moisture-sensitive organometallic reagents. By harnessing transition metal-catalyzed reductive coupling as a powerful tool, intricate molecular architectures can be readily assembled through the installation of two C-C bonds across π systems (alkenes/alkynes) via reaction with two appropriate electrophiles. Despite advances in reductive alkene difunctionalization, there remains significant potential for the discovery of novel reaction pathways. In this regard, development of reductive protocols that enable the union of challenging alkyl/alkynyl electrophiles in high regio- and chemoselectivity remains a highly sought-after goal.Apart from π-bond functionalization, reductive coupling has found application in carbohydrate chemistry, particularly in the synthesis of valuable C-glycosyl compounds. In this vein, suitable glycosyl donors can be used to generate reactive glycosyl radical intermediates under reductive conditions. Through elaborately designed reactions, these intermediates can be trapped to furnish pharmaceutically relevant glycoconjugates. Consequently, diversification in C-glycosyl compound synthesis using first-row transition metal catalysis holds strong appeal.In this Account, we summarize our efforts in the development of first-row transition metal-catalyzed reductive coupling reactions for applications in alkene/alkyne functionalization and C-glycosylation. We will first discuss the nickel (Ni)-catalyzed reductive difunctionalization of alkenes, aided by an 8-aminoquinoline (AQ) directing auxiliary. Next, we highlight the Ni-catalyzed hydroalkylation of alkenyl amides tethered with a similar AQ-derived directing auxiliary. Lastly, we discuss an efficient synthesis of 1,3-enynes involving site- and stereoselective reductive coupling of terminal alkynes with alkynyl halides and NHPI esters.Beyond alkene dicarbofunctionalization, we extended the paradigm of transition metal-catalyzed reductive coupling toward the construction of C-glycosidic linkages in carbohydrates. By employing an earth-abundant iron (Fe)-based catalyst, we show that useful glycosyl radicals can be generated from glycosyl chlorides under reductive conditions. These intermediates can be captured in C-C bond formation to furnish valuable C-aryl, C-alkenyl, and C-alkynyl glycosyl compounds with high diastereoselectivity. Our Ni-catalyzed multicomponent union of glycosyl chlorides, aryl/alkyl iodides, and isobutyl chloroformate under reductive conditions led to the stereoselective synthesis of C-acyl glycosides. In addition to Fe and Ni, we discovered a Ti-catalyzed/Mn-promoted synthetic route to access C-alkyl and C-alkenyl glycosyl compounds, through the reaction of glycosyl chlorides with electron-deficient alkenes/alkynes. We further developed an electron donor-acceptor (EDA) photoactivation system leveraging decarboxylative and deaminative strategies for C-glycosylation under Ni catalysis. This approach has been demonstrated to selectively activate carboxyl and amino motifs to furnish glycopeptide conjugates. Finally, through two distinct catalytic transformations of bench-stable heteroaryl glycosyl sulfones, we achieved stereodivergent access to both α- and ß-anomers of C-aryl glycosides, one of which involves a Ni-catalyzed reductive coupling with aryl iodides.The findings presented in this Account are anticipated to have far-reaching implications beyond our research. We foresee that these results will pave the way for new transformations founded on the concept of reductive coupling, leading to the discovery of novel applications in the future.

3.
Chem Soc Rev ; 52(9): 2946-2991, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37016986

RESUMEN

Alkene functionalisation is a powerful strategy that has enabled access to a wide array of compounds including valuable pharmaceuticals and agrochemicals. The reactivity of the alkene π-bond has allowed incorporation of a diverse range of atoms and functional groups through a wide variety of reaction pathways. N-Heterocyclic carbenes (NHCs) are a class of persistent carbenes that are widely employed as ancillary ligands due to their ability to act as strong σ-donors compared to widely-applied conventional phosphine-based ligands. NHCs are also unique as their molecular bulk provides steric influence for regio- and stereo-control in many alkene functionalisation reactions, illustrated by the examples covered in this review. A combination of the unique reactivity of NHC ligands and nickel's characteristics has facilitated the design of reaction pathways that show distinct selectivity and reactivity, including the activation of bonds previously considered "inert", such as C-H bonds, the C-O bond of ethers and esters, and the C-N bonds of amides. This review summarises the advancements in Ni(NHC) catalysed alkene functionalisation up to 2022, covering the following major reaction classes: Heck-type reactions, hydrofunctionalisation and dicarbofunctionalisation.

4.
Angew Chem Int Ed Engl ; 61(26): e202202674, 2022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35388949

RESUMEN

Catalytic strategies that provide stereoselective access to highly substituted alkenes from abundant monosubstituted substrates are exceedingly sought-after but rare. Here, we show that a N-heterocyclic carbene-NiI catalytic species mediates efficient union of electronically polarized terminal olefins with benzyl chlorides, in the presence of trimethylsilyl triflate and trimethylamine additives, to generate trisubstituted boron- and arene-containing trans alkenes in excellent regio- and stereoselectivities. Control experiments provide evidence for a mechanism involving branched-selective Heck-type benzylation that overrides substrate control, followed by trans-selective 1,3-hydrogen shift. The method represents a significant addition to the toolbox of reactions for the concise synthesis of unsaturated biologically active compounds.


Asunto(s)
Alquenos , Níquel , Alquenos/química , Catálisis , Isomerismo , Estructura Molecular , Níquel/química , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA