Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Huan Jing Ke Xue ; 40(12): 5623-5628, 2019 Dec 08.
Artículo en Chino | MEDLINE | ID: mdl-31854635

RESUMEN

The Pearl River Delta region is the major economic zone of the Greater Bay Area:it presents a large number of industrial-mining enterprises and is interested by severe heavy metal pollution (mainly caused by Pb and Cd). The research and development of safe and efficient heavy metal remediation materials and technologies is fundamental in order to guarantee regional environmental quality and habitat safety. Goethite-fulvic acid composites were prepared using goethite minerals present in the red soils of the Pearl River Delta region by passivation repair, and were applied to immobilize Pb and Cd in a co-contaminated soil. The results showed that a higher ratio of fulvic acid in the composites enhanced the immobilization effect on Pb and Cd:the immobilization efficiency (IE) of Pb and Cd increased with the passivation time, and then stabilized. Additionally, the exchangeable and carbonate-bound fractions of Pb and Cd in the soil decreased, while the Fe-Mn oxide-bound and residual fractions increased. The cation exchange capacity (CEC), as well as the available K and NH4+-N in the soil increased after the application of the composite materials. We conclude that goethite-fulvic acid composites can be effectively applied to the remediation of Pb-Cd contaminated soil.

2.
Huan Jing Ke Xue ; 39(6): 2927-2935, 2018 Jun 08.
Artículo en Chino | MEDLINE | ID: mdl-29965652

RESUMEN

The safety of vegetable production is a key link in reducing cadmium consumption through the food chains. Field experiments were conducted to investigate the effects of composite materials (calcium silicate-biological humus fertilizer) on the growth of shallots and the uptake of Cd by shallots from contaminated agricultural soil. Four treatments (T1: 0.5% calcium silicate+0.5% biological humus fertilizer; T2: 0.5% calcium silicate+1.0% biological humus fertilizer; T3: 1.0% calcium silicate+0.5% biological humus fertilizer; and T4: 1.0% calcium silicate+1.0% biological humus fertilizer) and a control group (CK) were adopted. The changes in soil pH, DTPA-extractable Cd, biomass of shallots, and cadmium concentrations in shallots over time under different treatments were analyzed. The results show that the application of composite amendments decreased the concentrations of DTPA-extractable Cd in the soil. In particular, after T3 treatment, the concentrations of soil DTPA-extractable Cd decreased by 60.71%, 49.54%, 44.63%, and 58.94% after 14, 28, 42, and 56 d, respectively. The biomass of the shallots aboveground increased significantly by 107.99% and 107.19% after T3 and T4 treatment, respectively. The composite amendments exhibited different effects on the uptake of Cd by the shallots from the soil, and the T4 treatment was the most effective in immobilizing Cd and inhibiting translocation of Cd into the shallots. The cadmium concentration in the shallots decreased by 43.80% after 56 d with the T4 treatment. In conclusion, T4 is the optimum treatment for soil cadmium immobilization.


Asunto(s)
Cadmio/metabolismo , Compuestos de Calcio/química , Fertilizantes , Chalotes/metabolismo , Silicatos/química , Contaminantes del Suelo/metabolismo , Suelo/química , Chalotes/efectos de los fármacos
3.
Huan Jing Ke Xue ; 38(6): 2530-2537, 2017 Jun 08.
Artículo en Chino | MEDLINE | ID: mdl-29965374

RESUMEN

The massive release of soil arsenic and its enrichment in rice are significantly associated with the flooded and anaerobic management in paddy soil. Soil redox potential (Eh), pH and iron oxides exert remarkable impacts on arsenic release, which remain to be explored. In this study, long-term aerobic and anaerobic as well as intermittent aerobic incubation treatments were applied to investigate the influences of Eh, pH and iron content on arsenic release. It was found that anaerobic and flooded treatment contributed to the highest arsenic release. With decreasing Eh, significant enhancement in As(Ⅲ) and As(Ⅴ) contents in soil solution was observed. Particularly, As(Ⅲ) and As(Ⅴ) contents during the second phase increased by 1.37 and 0.99 µg·L-1compared with those in the first phase. Conversely, significant reduction in soil arsenic release (P<0.05) occurred when intermittent aerobic treatment was adopted, and the lowest level of arsenic release was observed along with the longest treatment time (6 d). The exponent relationships between arsenic and soil Eh, pH and Fe2+ content were also established, which indicated that arsenic release could be accelerated by lower pH and elevated Eh. In addition, a significant positive correlation was also found between iron(Ⅱ) content and arsenic content in soil solution. Since low Eh and elevated pH served as critical factors driving arsenic release, intermittent and aerobic water management was proved to be an effective method for the inhibition of arsenic release and uptake and accumulation of arsenic by rice.


Asunto(s)
Arsénico/química , Hierro/química , Oryza , Contaminantes del Suelo/química , Oxidación-Reducción , Suelo
4.
Huan Jing Ke Xue ; 38(3): 1201-1208, 2017 Mar 08.
Artículo en Chino | MEDLINE | ID: mdl-29965595

RESUMEN

To explore the effects of different iron minerals on soil arsenic bioaccessibility, ferrihydrite, goethite and hematite were used in PBET, SBRC and IVG in-vitro experiments in this study. The relationship between arsenic bioavailability in gastric, small intestinal phases and arsenic speciation was also studied. The results showed that when 1% ferrihydrite was added, arsenic bioavailability in gastric phase was 2.22%, 5.11% and 7.43% by PBET, SBRC and IVG methods, respectively, while in the small intestinal phase it was 3.39%, 2.33% and 6.18%. At an elevated ferrihydrite dosage of 2%, significant difference in arsenic bioavailability was observed in both phases (P<0.05). According to in vitro experiments, the addition of the same amount of different iron minerals had contributed to the decrease in arsenic bioavailability to varying extents in contrast with the blank group, in the descending order of ferrihydrite(F1) > goethite(G1) > hematite(H1) (F2 > G2 > H2). Total arsenic in exchangeable (F1) and specifically sorbed (F2) state was found positively correlated with arsenic bioavailability in gastric phase by PBET, SBRC and IVG methods, the correlation coefficient of which being r=0.93, P=0.002, r=0.90, P=0.004 and r=0.89,P=0.006, respectively. It was also found that arsenic bioavailability in gastric phase was positively correlated with total arsenic in F1 and F2 states by PBET(r=0.94,P=0.001) and IVG (r=0.87,P=0.009) methods, but no significant correlation was observed by SBRC method. Additionally, three in vitro experiments showed that amorphous iron bound arsenic had significant negative correlation with arsenic bioavailability in gastric phase and small intestinal phase, except that no correlation was found in small intestinal phase by SBRC method.


Asunto(s)
Arsénico/farmacocinética , Hierro/química , Minerales/química , Contaminantes del Suelo/farmacocinética , Disponibilidad Biológica , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...