Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Cheminform ; 16(1): 91, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095893

RESUMEN

Data scarcity is one of the most critical issues impeding the development of prediction models for chemical effects. Multitask learning algorithms leveraging knowledge from relevant tasks showed potential for dealing with tasks with limited data. However, current multitask methods mainly focus on learning from datasets whose task labels are available for most of the training samples. Since datasets were generated for different purposes with distinct chemical spaces, the conventional multitask learning methods may not be suitable. This study presents a novel multitask learning method MTForestNet that can deal with data scarcity problems and learn from tasks with distinct chemical space. The MTForestNet consists of nodes of random forest classifiers organized in the form of a progressive network, where each node represents a random forest model learned from a specific task. To demonstrate the effectiveness of the MTForestNet, 48 zebrafish toxicity datasets were collected and utilized as an example. Among them, two tasks are very different from other tasks with only 1.3% common chemicals shared with other tasks. In an independent test, MTForestNet with a high area under the receiver operating characteristic curve (AUC) value of 0.911 provided superior performance over compared single-task and multitask methods. The overall toxicity derived from the developed models of zebrafish toxicity is well correlated with the experimentally determined overall toxicity. In addition, the outputs from the developed models of zebrafish toxicity can be utilized as features to boost the prediction of developmental toxicity. The developed models are effective for predicting zebrafish toxicity and the proposed MTForestNet is expected to be useful for tasks with distinct chemical space that can be applied in other tasks.Scieific contributionA novel multitask learning algorithm MTForestNet was proposed to address the challenges of developing models using datasets with distinct chemical space that is a common issue of cheminformatics tasks. As an example, zebrafish toxicity prediction models were developed using the proposed MTForestNet which provide superior performance over conventional single-task and multitask learning methods. In addition, the developed zebrafish toxicity prediction models can reduce animal testing.

2.
Artículo en Inglés | MEDLINE | ID: mdl-35457705

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder with an insidious onset and irreversible condition. Patients with mild cognitive impairment (MCI) are at high risk of converting to AD. Early diagnosis of unstable MCI patients is therefore vital for slowing the progression to AD. However, current diagnostic methods are either highly invasive or expensive, preventing their wide applications. Developing low-invasive and cost-efficient screening methods is desirable as the first-tier approach for identifying unstable MCI patients or excluding stable MCI patients. This study developed feature selection and machine learning algorithms to identify blood-sample gene biomarkers for predicting stable MCI patients. Two datasets obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database were utilized to conclude 29 genes biomarkers (31 probes) for predicting stable MCI patients. A random forest-based classifier performed well with area under the receiver operating characteristic curve (AUC) values of 0.841 and 0.775 for cross-validation and test datasets, respectively. For patients with a prediction score greater than 0.9, an excellent concordance of 97% was obtained, showing the usefulness of the proposed method for identifying stable MCI patients. In the context of precision medicine, the proposed prediction model is expected to be useful for identifying stable MCI patients and providing medical doctors and patients with new first-tier diagnosis options.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/genética , Biomarcadores , Encéfalo , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/genética , Progresión de la Enfermedad , Marcadores Genéticos , Humanos , Aprendizaje Automático , Imagen por Resonancia Magnética/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA