Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ultrason Sonochem ; 108: 106950, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38878715

RESUMEN

The Inconel 690 alloy is widely used in the manufacturing of nuclear equipment, such as pipe welding for steam generators (SG) and pressure vessels, due to its excellent high-temperature strength, corrosion resistance, and thermal stability. However, coarse grains have been observed in the welded joint of Inconel 690. Considering its crucial role as a structural material under high pressure, temperature, and corrosive conditions, improvements should be made to the microstructure of the welded joint. The ultrasonic-assisted gas tungsten arc welding (UA-GTAW) was used in Inconel 690 welding. The influence of ultrasonic vibration on the microstructure and mechanical properties of welded joints was studied. The results show that the ultrasonic refined the microstructure further to improve the mechanical properties. The UA-GTAW sample performed superiorities over regular GTAW joint in multi perspective including refined solidification grains, less element segregation, higher tensile strength and hardness. The Yield strength, ultimate tensile strength, and elongation increased from 320 MPa, 591 MPa, and 25.1 % to 387 MPa, 672 MPa, and 31.6 %, respectively.

2.
Materials (Basel) ; 16(8)2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37110075

RESUMEN

The effect of different heat inputs of 1.45 kJ/mm, 1.78 kJ/mm and 2.31 kJ/mm on the microstructure and mechanical properties of deposited metals of the self-developed AWS A5.28 E120C-K4 high strength steel flux-cored wire was studied by optical microscope, scanning electron microscope and mechanical property test. With the increase in heat input, the results showed that the microstructure of deposited metals became coarse. Acicular ferrite increased at first and then decreased, granular bainite increased and degenerated upper bainite and martensite decreased slightly. Under the low heat input of 1.45 kJ/mm, the cooling rate was fast and the element diffusion was uneven, which caused composition segregation and easy to form large size inclusions SiO2-TiC-CeAlO3 with weak binding to the matrix. Under the middle heat input of 1.78 kJ/mm, the composite rare earth inclusions in dimples were mainly TiC-CeAlO3. The dimples were small and uniformly distributed, and the dimple fracture mainly depended on the wall-breaking connection between medium-sized dimples rather than an intermediate media. Under the high heat input of 2.31 kJ/mm, SiO2 was easy to adhere to high melting point Al2O3 oxides to form irregular composite inclusions. Such irregular inclusions do not need to absorb too much energy to form necking. Finally, the integrated effects of microstructure and inclusions resulted in the optimum mechanical properties of deposited metals with a heat input of 1.78 kJ/mm, which was a tensile strength of 793 MPa and an average impact toughness at -40 °C of 56 J.

3.
Materials (Basel) ; 15(9)2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35591506

RESUMEN

A novel bypass coupling variable polarity plasma arc was proposed to achieve the accurate adjusting of heat and mass transfer in the welding and additive manufacturing of aluminum alloy. However, the physical characteristics and decoupled transfer behavior remain unclear, restricting its application and development. A three-dimensional model of the bypass coupling variable polarity plasma arc was built based on Kirchhoff's law, the main arc and the bypass arc are coupled by an electromagnetic field. The model of current attachment on the tungsten electrode surface is included for simulating different heating processes of the EP and EN phases in the coupling arc. The distribution of temperature field, flow field, and current density of the bypass coupling variable polarity plasma arc was studied by the three-dimensional numerical model. The heat input on the base metal under different current conditions is quantified. To verify the model, the arc voltages are compared and the results in simulation and experiment agree with each other well. The results show that the radius of the bypass coupling arc with or without bypass current action on the base metal is different, and the flow vector of the bypass coupling arc plasma with bypass current is larger than the arc without bypass current. By comparing the heat transfer on the electrodes' boundary under different current conditions, it is found that increasing the bypass current results in the rise in heat input on the base metal. Therefore, it is concluded that using bypass current is unable to completely decouple the wire melting and the heat input of the base metal. The decoupled degree of heat transfer is one of the important factors for accurate control in the manufacturing process with this coupling arc.

4.
Materials (Basel) ; 15(3)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35161212

RESUMEN

The evolution of austenite, acicular ferrite, upper bainite and martensite, and the nucleation of inclusions in the microstructure of high-strength steel deposited metals, was systematically investigated using three kinds of A5.28 E120C-K4 metal-cored wires with various rare earth Pr contents. Grain structure evolution in the process of high temperature, dispersoid characteristics of inclusions and the crystallographic characteristics of the microstructure were assessed. Compared with no addition of Pr6O11, adding 1%Pr6O11 resulted in refined, spheroidized and dispersed inclusions in the deposited metal, leading to an increase in the pinning forces on the grain boundary movement, promoting the formation of an ultra-fine grain structure with an average diameter of 41 µm. The inclusions in the deposited metals were Mn-Si-Pr-Al-Ti-O after Pr addition; the average size of the inclusions in the Pr-containing deposited metals was the smallest, while the number and density of inclusions was the highest. The size of effective inclusions (nucleus of acicular ferrite formation) was mainly in the range of 0.6-1.5 µm. In addition, the content of upper bainite decreased, while the percentage of acicular ferrite increased by 24% due to the increase in the number of effective inclusions in the Pr-containing deposited metals in this study. This study shows that the addition of 1% Pr6O11 is efficient in achieving fine interlaced multiphase with an ultrafine-grained structure, resulting in an enhancement of the impact toughness of the deposited metal.

5.
Materials (Basel) ; 14(17)2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34500979

RESUMEN

Ultrasonic energy is introduced into the Metal Inert Gas (MIG) welding arc and weld pool by superposition of an ultrasonic frequency current. In this study, the arc shape, arc energy, and ultrasonic energy that responded to ultrasonic excitation voltage and frequency is investigated. The comprehensive influence of arc and ultrasonic energy on weld formation, microstructure, and mechanical properties is further studied. The arc and ultrasonic energy are analyzed by using a high-speed camera and microphone, respectively. The results showed that the arc width increased, and the arc energy density decreased after the superposition of ultrasonic current. The arc height could be compressed under certain ultrasonic excitation parameters. The ultrasonic excitation voltage and frequency had a direct influence on the ultrasonic energy. The arc height, arc energy density, and ultrasonic energy together determined the weld width. Ultrasound could effectively refine the microstructure of the weld zone and fusion zone but had little effect on the heat-affected zone. Ultrasound improved the hardness of the joint by refining the grain and the second phase. The joint hardness was the highest when the ultrasonic excitation voltage was 100 V, and the frequency was 30 kHz.

6.
Materials (Basel) ; 12(24)2019 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-31835860

RESUMEN

Ti4Al6V and 6061 Al dissimilar metals were butt welded by the laser oscillating welding method. The effects of laser offset, oscillation frequency, and energy distribution on the formation, microstructure, and tensile properties of dissimilar metal joints are discussed in detail. The experimental results show that the Ti6Al4V was micro melted with a laser offset of 1.1 mm, and a large number of intermetallic compounds (IMCs) were formed on the side of the Ti6Al4V. Additionally, there were some porosity defects in the fusion zone (FZ) due to an inappropriate laser oscillation frequency. When the laser offset was increased to 1.2 mm, the IMC distribution was uniform and the thickness was controlled below 2 µm. The porosity defects in the FZ decreased and the tensile strength of the joints increased significantly. The maximum value of tensile strength reached 173 MPa at a laser frequency of 28 Hz.

7.
Materials (Basel) ; 12(24)2019 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-31817725

RESUMEN

Tungsten inert gas (TIG) arc welding of 2219 aluminum alloy was assisted with a trailing periodic ultrasonic vibration, which was output from a trailing roller behind the welding torch. It was found that the weld appearance was periodically convex due to the periodic input of ultrasonic vibration. With the addition of ultrasonic vibration, the columnar grains in the weld zone transformed to equiaxed grains, so along the longitudinal direction, the equiaxed grains and the columnar grains were alternately distributed due to the periodic ultrasonic vibration. The effects of different ultrasonic powers were investigated. The penetration depth and the amount of the melting metal both increased as the ultrasonic power increased. The coarse precipitated phases in the weld zone tended to disperse uniformly under ultrasonic vibration. Compared with conventional TIG welded joints, the hardness of the weld zone of the ultrasonic assisted TIG welding increased by 8.43%, and the tensile strength increased by 29.02%. The ultrasonic cavitation could decrease the nucleation radius and break the dendrites, which led to the grains' refinement and the final mechanical properties' improvement.

8.
Materials (Basel) ; 12(20)2019 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-31614415

RESUMEN

High strength steel has attracted a lot of attention due to its excellent advantage of weight reduction. A thin Al-Si coating covered on the surface of hot-press-forming (HPF) steel offers functions of antioxidation and decarburization under high temperature processing conditions. In this study, the microstructure characteristic, phase, microhardness, and tensile strength of laser welded Al-Si coated HPF steel joints were investigated at different laser powers. Experimental results show that the welding process becomes unstable because of metallic vapor generated by ablation of the coating. Some of the white bright rippled Fe-Al phase was observed to be distributed in the fusion zone randomly. It is found that microhardness, tensile strength, and cupping test qualification rate decreases with the increase of the laser power. For the 1.1 kW laser power, the sound weld performs the best mechanical properties: Microhardness of 466.53 HV and tensile strength of 1349.9 MPa.

9.
Materials (Basel) ; 12(9)2019 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-31035695

RESUMEN

: The characteristics of the welding heat source for tandem narrow-gap gas metal arc welding are examined for different ternary shielding gas (Ar-CO2-He) compositions. Results of previous calculations of arc properties for bead-on-plate geometry are adapted to the narrow-gap geometry to predict these characteristics. The heat source concentration factor decreases and the maximum heat flux density increases as the helium content increases, which leads to an increased welding heat efficiency. Addition of CO2 up to around 10% also increases the heat efficiency. When the CO2 content exceeds 10%, the heat source concentration factor increases significantly and the heat efficiency decreases. The shielding gas composition also affects the heat source distribution. The heat source characteristics are applied to a computational fluid dynamic model of the weld pool to predict the weld shape, and the predictions are verified by experiment. The results indicate that the appropriate addition of helium to the shielding gas can increase the heat transferred to the peripheral regions of the arc and increase the sidewall penetration.

10.
Ultrason Sonochem ; 39: 403-413, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28732962

RESUMEN

Under the action of acoustic waves during an ultrasonic-assisted tungsten inert gas (TIG) welding process, a grain of a TIG weld of aluminum alloy is refined by nucleation and grain fragmentation. Herein, effects of ultrasound on grain fragmentation in the TIG weld of aluminum alloy are investigated via systematic welding experiments of pure aluminum. First, experiments involving continuous and fixed-position welding are performed, which demonstrate that ultrasound can break the grain of the TIG weld of pure aluminum. The microstructural characteristics of an ultrasonic-assisted TIG weld fabricated by fixed-position welding are analyzed. The microstructure is found to transform from plane crystal, columnar crystal, and uniform equiaxed crystal into plane crystal, deformed columnar crystal, and nonuniform equiaxed crystal after application of ultrasound. Second, factors influencing ultrasonic grain fragmentation are investigated. The ultrasonic amplitude and welding current are found to have a considerable effect on grain fragmentation. The degree of fragmentation first increases and then decreases with an increase in ultrasonic amplitude, and it increases with an increase in welding current. Measurement results of the vibration of the weld pool show that the degree of grain fragmentation is related to the intensity of acoustic nonlinearity in the weld pool. The greater the intensity of acoustic nonlinearity, the greater is the degree of grain fragmentation. Finally, the mechanism of ultrasonic grain fragmentation in the TIG weld of pure aluminum is discussed. A finite element simulation is used to simulate the acoustic pressure and flow in the weld pool. The acoustic pressure in the weld pool exceeds the cavitation threshold, and cavitation bubbles are generated. The flow velocity in the weld pool does not change noticeably after application of ultrasound. It is concluded that the high-pressure conditions induced during the occurrence of cavitation, lead to grain fragmentation in a pure aluminum TIG weld during an ultrasonic-assisted TIG welding process.

11.
Ultrason Sonochem ; 29: 476-84, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26558995

RESUMEN

As a newly developed arc welding method, power ultrasound has been successfully introduced into arc and weld pool during ultrasonic wave-assisted arc welding process. The advanced process for molten metals can be realized by utilizing additional ultrasonic field. Under the action of the acoustic wave, the plasma arc as weld heat source is regulated and its characteristics make an obvious change. Compared with the conventional arc, the ultrasonic wave-assisted arc plasma is bound significantly and becomes brighter. To reveal the dependence of the acoustic binding force on acoustic field parameters, a two-dimensional acoustic field model for ultrasonic wave-assisted arc welding device is established. The influences of the radiator height, the central pore radius, the radiator radius, and curvature radius or depth of concave radiator surface are discussed using the boundary element method. Then the authors analyze the resonant mode by this relationship curve between acoustic radiation power and radiator height. Furthermore, the best acoustic binding ability is obtained by optimizing the geometric parameters of acoustic radiator. In addition, three concave radiator surfaces including spherical cap surface, paraboloid of revolution, and rotating single curved surface are investigated systematically. Finally, both the calculation and experiment suggest that, to obtain the best acoustic binding ability, the ultrasonic wave-assisted arc welding setup should be operated under the first resonant mode using a radiator with a spherical cap surface, a small central pore, a large section radius and an appropriate curvature radius.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA