Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Transl Cancer Res ; 13(5): 2571-2579, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38881937

RESUMEN

Background: Programmed cell death-1 (PD-1) inhibitors and anti-angiogenic drugs have become a hotspot in research of anti-tumor programs; however, they can also cause some rare drug-related adverse reactions. Immune checkpoint inhibitors (ICIs) cause adverse reactions in the body, collectively known as immune-related adverse events (irAEs). Ocular side effects can occur in both targeted and immunotherapy patients, including dry eye, blurred vision, uveitis, conjunctivitis, retinopathy, or thyroid eye disease. To our knowledge, this is the first case report describing corneal ulcers secondary to dry eye in a patient treated with the combination of PD-1 inhibitor sintilimab and multi-targeted receptor tyrosine kinase inhibitor (TKI) anlotinib. Case Description: A 65-year-old woman with non-small cell lung cancer (NSCLC) and bone metastases, without pre-existing ocular conditions, experienced mild dry eye symptoms 1 month following treatment with sintilimab (200 mg q3w) in combination with anlotinib (12 mg q3w). Unrelieved dry eye symptoms occurred after the third cycle of chemotherapy, and she was diagnosed with dry eye syndrome. Subsequently, she received corneal protective lens, sodium hyaluronate eye drops, and prednisone treatment. Her corneal epithelial damage did not improve significantly, and within the following 2 months, her vision decreased in both eyes and progressed to bilateral corneal ulcers. Oral administration of sintilimab and anlotinib was interrupted, and treatments such as corticosteroids, anti-inflammatory drugs, and corneal repair were administered; however, both eyes presented with corneal subepithelial defect and corneal scarring. Due to a shortage of donors, no corneal transplantation surgery could be performed. Conclusions: The development of corneal epithelial disorders in patients receiving target therapy and immunotherapy may not be reversed by reducing its dose. Although the condition is controlled with the use of glucocorticoids, some eye side effects cannot be cured. The timely detection and intervention of adverse effects of anti-tumor drugs by oncologists and ophthalmologists is critical for rational prescription. Ophthalmologists should be aware of eye side effects in patients using immunotherapy to ensure appropriate treatment and minimize potential eye complications such as dry eye, conjunctivitis, etc.

2.
Adv Mater ; 36(9): e2305032, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37724482

RESUMEN

The perception of object's deformability in unstructured interactions relies on both kinesthetic and cutaneous cues to adapt the uncertainties of an object. However, the existing tactile sensors cannot provide adequate cutaneous cues to self-adaptively estimate the material softness, especially in non-standard contact scenarios where the interacting object deviates from the assumption of an elastic half-infinite body. This paper proposes an innovative design of a tactile sensor that integrates the capabilities of two slow-adapting mechanoreceptors within a soft medium, allowing self-decoupled sensing of local pressure and strain at specific locations within the contact interface. By leveraging these localized cutaneous cues, the sensor can accurately and self-adaptively measure the material softness of an object, accommodating variations in thicknesses and applied forces. Furthermore, when combined with a kinesthetic cue from the robot, the sensor can enhance tactile expression by the synergy of two relevant deformation attributes, including material softness and compliance. It is demonstrated that the biomimetic fusion of tactile information can fully comprehend the deformability of an object, hence facilitating robotic decision-making and dexterous manipulation.


Asunto(s)
Biomimética , Robótica , Mecanorreceptores , Percepción
3.
Adv Sci (Weinh) ; 10(28): e2303338, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37541312

RESUMEN

The application of stretchable strain sensors in human movement recognition, health monitoring, and soft robotics has attracted wide attention. Compared with traditional electronic conductors, stretchable ionic hydrogels are more attractive to organization-like soft electronic devices yet suffer poor sensitivity due to limited ion conduction modulation caused by their intrinsic soft chain network. This paper proposes a strategy to modulate ion transport behavior by geometry-induced strain concentration to adjust and improve the sensitivity of ionic hydrogel-based strain sensors (IHSS). Inspired by the phenomenon of vehicles slowing down and changing lanes when the road narrows, the strain redistribution of ionic hydrogel is optimized by structural and mechanical parameters to produce a strain-induced resistance boost. As a result, the gauge factor of the IHSS is continuously tunable from 1.31 to 9.21 in the strain range of 0-100%, which breaks through the theoretical limit of homogeneous strain-distributed ionic hydrogels and ensures a linear electromechanical response simultaneously. Overall, this study offers a universal route to modulate the ion transport behavior of ionic hydrogels mechanically, resulting in a tunable sensitivity for IHSS to better serve different application scenarios, such as health monitoring and human-machine interface.

4.
Sensors (Basel) ; 21(16)2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34450801

RESUMEN

Recent achievements in the field of computer vision, reinforcement learning, and locomotion control have largely extended legged robots' maneuverability in complex natural environments. However, little research focuses on sensing and analyzing the physical properties of the ground, which is crucial to robots' locomotion during their interaction with highly irregular profiles, deformable terrains, and slippery surfaces. A biomimetic, flexible, multimodal sole sensor (FMSS) designed for legged robots to identify the ontological status and ground information, such as reaction force mapping, contact situation, terrain, and texture information, to achieve agile maneuvers was innovatively presented in this paper. The FMSS is flexible and large-loaded (20 Pa-800 kPa), designed by integrating a triboelectric sensing coat, embedded piezoelectric sensor, and piezoresistive sensor array. To evaluate the effectiveness and adaptability in different environments, the multimodal sensor was mounted on one of the quadruped robot's feet and one of the human feet then traversed through different environments in real-world tests. The experiment's results demonstrated that the FMSS could recognize terrain, texture, hardness, and contact conditions during locomotion effectively and retrain its sensitivity (0.66 kPa-1), robustness, and compliance. The presented work indicates the FMSS's potential to extend the feasibility and dexterity of tactile perception for state estimation and complex scenario detection.


Asunto(s)
Robótica , Percepción del Tacto , Biomimética , Humanos , Locomoción
5.
ACS Appl Mater Interfaces ; 12(23): 26137-26144, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32423195

RESUMEN

Flexible pressure sensors present great potential in the application of human health monitoring, tactile function of prosthesis, and electronic skin for robotics. These applications require different trade-off between the sensitivity and sensing range, therefore, it is imperative to develop range-specific sensitivities in a single sensor. In this paper, a bioinspired strategy for a resistive pressure sensor using a graded porous material is proposed to measure pressures from several pascals to megapascals. Its fabrication is based on an easily accessible template method. The nest-architecture-based wide-range pressure sensor exhibits adequate sensitivity under an extensive pressure regime (20 Pa to 1.2 MPa). In addition, with rational structural design and subtle engineering of the material properties, the sensor achieves remarkable mechanical stability. To prove the concept, sensors were attached on a bicycle wheel to monitor the tire-pavement pressure and on human skin to detect biosignals such as venous and arterial blood pressure pulses.


Asunto(s)
Monitoreo Fisiológico/instrumentación , Dispositivos Electrónicos Vestibles , Biomimética/métodos , Presión Sanguínea , Humanos , Límite de Detección , Docilidad , Porosidad , Presión , Pulso Arterial/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...