Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 302
1.
J Mater Chem B ; 2024 May 17.
Article En | MEDLINE | ID: mdl-38757243

Hydrogen sulfide (H2S) and hydrazine (N2H4) are toxic compounds in environmental and living systems, and hydrogen sulfide is also an important signaling molecule. However, in the absence of dual-color probes capable of detecting both H2S and N2H4, the ability to monitor the crosstalk of these substances is restricted. Herein, we developed an ESIPT-based dual-response fluorescent probe (BDM-DNP) for H2S and N2H4 detection via dually responsive sites. The BDM-DNP possessed absorbing strength in the detection of H2S and N2H4, with a large Stokes shift (156 nm for H2S and 108 nm for N2H4), high selectivity and sensitivity, and good biocompatibility. Furthermore, BDM-DNP can be utilized for the detection of hydrogen sulfide and hydrazine in actual soil, and gaseous H2S and N2H4 in environmental systems. Notably, BDM-DNP can detect H2S and N2H4 in living cells for disease diagnosis and treatment evaluation.

2.
Mikrochim Acta ; 191(6): 333, 2024 05 16.
Article En | MEDLINE | ID: mdl-38753167

The COVID-19 pandemic has underscored the urgent need for rapid and reliable strategies for early detection of SARS-CoV-2. In this study, we propose a DNA nanosphere-based crosslinking catalytic hairpin assembly (CCHA) system for the rapid and sensitive SARS-CoV-2 RNA detection. The CCHA system employs two DNA nanospheres functionalized with catalytic hairpin assembly (CHA) hairpins. The presence of target SARS-CoV-2 RNA initiated the crosslinking of DNA nanospheres via CHA process, leading to the amplification of fluorescence signals. As a result, the speed of SARS-CoV-2 diagnosis was enhanced by significantly increasing the local concentration of the reagents in a crosslinked DNA product, leading to a detection limit of 363 fM within 5 min. The robustness of this system has been validated in complex environments, such as fetal bovine serum and saliva. Hence, the proposed CCHA system offers an efficient and simple approach for rapid detection of SARS-CoV-2 RNA, holding substantial promise for enhancing COVID-19 diagnosis.


COVID-19 , Limit of Detection , RNA, Viral , SARS-CoV-2 , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , RNA, Viral/analysis , RNA, Viral/genetics , Humans , COVID-19/diagnosis , COVID-19/virology , Nanospheres/chemistry , DNA/chemistry , Inverted Repeat Sequences , Animals , COVID-19 Nucleic Acid Testing/methods , Cattle , Cross-Linking Reagents/chemistry , Saliva/virology
3.
Food Chem ; 450: 139315, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38615534

The monitoring of formaldehyde (FA) in biosystems and real foods is critical for ensuring human health and food safety. However, the development of effective and highly selective assays for sensing FA in organisms and real food samples remains challenging. Herein, a hydrophilic group-modified the probe (Nap-FA) was reported, which utilizes the specific chemical reaction between FA and hydrazino to trigger a "turn-on" fluorescence response. The probe Nap-FA displayed superior selectivity, high sensitivity, good photostability and a low detection limit in the reaction with FA. Notably, Nap-FA has been successfully used for imaging FA in cells, zebrafish, and plant root tissues. In addition, the rationally constructed probe Nap-FA could rapidly and visually detect FA in real food samples. This work provides a prospective approach for monitoring FA in complex biological systems and food fields.

4.
J Hazard Mater ; 470: 134275, 2024 May 15.
Article En | MEDLINE | ID: mdl-38613954

Palladium contaminants can pose risks to human health and the natural environment. Once Pd2+ enters the body, it can bind with DNA, proteins, and other macromolecules, disrupting cellular processes and causing serious harm to health. Therefore, it becomes critical to develop simple, highly selective and precise methods for detecting Pd2+in vivo. Here, we have successfully developed the first activated second near-infrared region fluorescence (NIR-II FL) and ratio photoacoustic (PA) probe NYR-1 for dual-modal accurate detection of Pd2+ levels. NYR-1 is capable of rapidly (< 60 s) and sensitively detection of Pd2+ in solution, providing switched on NIR-II FL920 and ratio PA808/PA720 dual-mode signal change. More notably, the probe NYR-1 was successfully used for non-invasive imaging of Pd2+ overload in mouse liver by NIR-II FL/Ratio PA dual-modality imaging technology for the first time. Thus, this work opens up a promising dual-modal detection method for the precise detection of Pd2+ in organisms and in the environment.


Fluorescent Dyes , Liver , Palladium , Photoacoustic Techniques , Palladium/chemistry , Animals , Liver/diagnostic imaging , Liver/metabolism , Photoacoustic Techniques/methods , Fluorescent Dyes/chemistry , Mice , Optical Imaging , Infrared Rays , Mice, Inbred BALB C , Fluorescence
5.
Anal Methods ; 16(18): 2850-2856, 2024 May 09.
Article En | MEDLINE | ID: mdl-38644726

Early diagnostics and therapies for diseases such as cancer are limited by the fact that the inducing factors for the development of cytopathies are not clear. The stable polarity of lipid droplets is a potential biomarker for tumor cells; however, the complex intracellular biological environment poses great difficulties for specific detection of the polarity. Therefore, to meet this pressing challenge, we designed a highly selective fluorescent probe, DCI-Cou-polar, which used the ICT mechanism to differentiate normal cells and tumor cells in tissue sections by detecting changes in the polarities of intracellular lipid droplets. The introduction of a cyclic amine at the 7-position of coumarin (benzoquinolizine coumarin) reduced its ability to donate electrons compared with the diethylamino group, which increased the probe selectivity while retaining the sensitivity to polarity. With NIR emission and large Stokes shifts, DCI-Cou-polar has high sensitivity to polarity, excellent photostability, and biocompatibility, and it tracks lipid droplets with high fidelity. Therefore, we believe that this polarity-sensitive probe provides information on the connection between the polarity of lipid droplets and tumors while improving the development of highly selective polarity probes.


Coumarins , Fluorescent Dyes , Fluorescent Dyes/chemistry , Humans , Coumarins/chemistry , Animals , Lipid Droplets/chemistry , Neoplasms/pathology , Mice , Cell Polarity , Cell Line, Tumor
6.
Luminescence ; 39(4): e4749, 2024 Apr.
Article En | MEDLINE | ID: mdl-38658767

Lipid droplet, an intracellular lipid reservoir, is vital for energy metabolism and signal transmission in cells. The viscosity directly affects the metabolism of lipid droplets, and the abnormal viscosity is associated with the occurrence and development of various diseases. Therefore, it is indispensable to develop techniques that can detect viscosity changes in intracellular lipid droplets. Based on twisted intramolecular charge transfer (TICT) mechanism, a novel small-molecule lipid droplet-targeted viscosity fluorescence probe PPF-1 was designed. The probe was easy to synthesize, it had a large Stokes shift, stable optical properties, and low bio-toxicity. Compared to being in methanol solution, the fluorescence intensity of PPF-1 in glycerol solution was increased 26.7-fold, and PPF-1 showed excellent ability to target lipid droplets. Thus, the probe PPF-1 could provide an effective means of detecting viscosity changes of lipid droplets and was of great value for physiological diagnosis of related diseases, pathological analysis, and medical research.


Fluorescent Dyes , Lipid Droplets , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Viscosity , Lipid Droplets/chemistry , Humans , Molecular Structure , Optical Imaging , Spectrometry, Fluorescence
7.
Angew Chem Int Ed Engl ; 63(21): e202402537, 2024 May 21.
Article En | MEDLINE | ID: mdl-38509827

Research on ferroptosis in myocardial ischemia/reperfusion injury (MIRI) using mitochondrial viscosity as a nexus holds great promise for MIRI therapy. However, high-precision visualisation of mitochondrial viscosity remains a formidable task owing to the debilitating electrostatic interactions caused by damaged mitochondrial membrane potential. Herein, we propose a dual-locking mitochondria-targeting strategy that incorporates electrostatic forces and probe-protein molecular docking. Even in damaged mitochondria, stable and precise visualisation of mitochondrial viscosity in triggered and medicated MIRI was achieved owing to the sustained driving forces (e.g., pi-cation, pi-alkyl interactions, etc.) between the developed probe, CBS, and the mitochondrial membrane protein. Moreover, complemented by a western blot, we confirmed that ferrostatin-1 exerts its therapeutic effect on MIRI by improving the system xc-/GSH/GPX4 antioxidant system, confirming the therapeutic value of ferroptosis in MIRI. This study presents a novel strategy for developing robust mitochondrial probes, thereby advancing MIRI treatment.


Ferroptosis , Myocardial Reperfusion Injury , Ferroptosis/drug effects , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Molecular Docking Simulation , Animals , Mitochondria/metabolism , Mitochondria/drug effects , Humans , Cyclohexylamines/chemistry , Cyclohexylamines/pharmacology , Phenylenediamines/chemistry , Phenylenediamines/pharmacology
8.
J Mater Chem B ; 12(14): 3436-3444, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38497466

ONOO-, a bioactive molecule, plays a critical role in inflammation-related signaling pathways and pathological mechanisms. Numerous studies have established a direct correlation between elevated ONOO- levels and tumor progression. Therefore, investigating ONOO- levels in inflammation and tumors is of utmost importance. Fluorescence imaging presents a highly sensitive, non-invasive, easily operable, selective, and efficient method for ONOO- detection in situ. In this study, we designed and synthesized a rhodamine-based probe, NRho, which effectively identifies tumors, inflammatory cells, tissues, and organs by detecting ONOO- content. The synthesis process of NRho is simple, yielding a probe with favorable spectral characteristics and rapid response. Our cell imaging analysis has provided novel insights, revealing distinct ONOO- levels among different types of cancer cells, with hepatocellular carcinoma cells exhibiting higher ONOO- content than the others. This observation marks the proposal of such variations in ONOO- levels across cancer cell types. Furthermore, our study has showcased the practicality of our probe in live organ imaging, enabling the identification of tumors from living organs within a brief 5-minute incubation period. Additionally, our findings highlight the rapid detection capability of the probe NRho in various tissue samples, effectively identifying inflammation. This research holds important promise in advancing biomedical research and clinical diagnosis.


Fluorescent Dyes , Peroxynitrous Acid , Humans , Peroxynitrous Acid/analysis , Rhodamines , HeLa Cells , Inflammation/diagnostic imaging
9.
Anal Chim Acta ; 1297: 342330, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38438225

Cellular micro-environment analysis via fluorescence probe has become a powerful method to explore the early-stage cancer diagnosis and pathophysiological process of relevant diseases. The polarity change of intracellular lipid droplets (LDs) is closely linked with disorders or diseases, which result in various physiological and pathological processes. However, the efficient design strategy for lipid droplet polarity probes with high sensitivity is lacking. To overcome this difficulty, two kinds of LDs-targeting and polarity-sensitive fluorescent probes containing carbazole and siloxane groups were rationally designed and synthesized. With the carbazole-based rotor and bridge-like siloxanes, two probes (P1 and P2) behave high sensitivity to polarity changes and show different fluorescent intensity in normal and cancer cells. Notably, polysiloxanes groups promoted the response sensitivity of the probes dramatically for the polymeric microenvironment. In addition, due to the polarity changes of LDs in cancer cells, the distinct fluorescent intensities in different channels of laser scanning confocal microscope were observed between NHA cell and U87 cells. This work could offer an opportunity to monitor the dynamic behaviors of LDs and further provide a powerful tool to be potentially applied in the early-stage diagnosis of cancer.


Lipid Droplets , Neoplasms , Polymers , Siloxanes , Carbazoles , Fluorescent Dyes , Neoplasms/diagnostic imaging
10.
Angew Chem Int Ed Engl ; 63(2): e202312632, 2024 Jan 08.
Article En | MEDLINE | ID: mdl-37849219

Photoacoustic (PA) imaging is emerging as one of the important non-invasive imaging techniques in biomedical research. Small molecule- second near-infrared window (NIR-II) PA dyes combined with imaging data can provide comprehensive and in-depth in vivo physiological and pathological information. However, the NIR-II PA dyes usually exhibit "always-on" properties due to the lack of a readily optically tunable group, which hinders the further applications in vivo. Herein, a novel class of dyes GX have been designed and synthesized as an activatable NIR-II PA platform, in which the absorption/emission wavelength of GX-5 extends up to 1082/1360 nm. Importantly, the GX dyes have a strong tissue penetration depth and high-resolution for the mouse vasculature structures in NIR-II PA 3D imaging and high signal-to-noise ratio in NIR-II fluorescence (FL) imaging. Furthermore, to demonstrate the applicability of GX dyes, the first NIR-II PA probe GX-5-CO activated by carbon monoxide (CO) was engineered and employed to reveal the enhancement of the CO levels in the hypertensive mice by high-contrast NIR-II PA and FL imaging. We expect that many derivatives of GX dyes will be developed to afford versatile NIR-II PA platforms for designing a wide variety activatable NIR-II PA probes as biomedical tools.


Fluorescent Dyes , Photoacoustic Techniques , Mice , Animals , Fluorescent Dyes/chemistry , Spectrum Analysis , Optical Imaging/methods , Photoacoustic Techniques/methods
11.
Anal Methods ; 16(2): 293-300, 2024 01 04.
Article En | MEDLINE | ID: mdl-38115761

Viscosity, an essential parameter of the cellular microenvironment, has the ability to indicate the condition of living cells. It is closely linked to numerous diseases like Alzheimer's disease, diabetes, and cardiovascular disorders. Therefore, it is necessary to design tools to effectively monitor viscosity changes, which could provide promising avenues for therapeutic interventions in these diseases. Herein, we report a novel mitochondria-targeting fluorescent probe GX-VS which was suitable for the detection of viscosity changes in vivo and in vitro. The probe GX-VS had many advantages such as long emission wavelength (650 nm), large Stokes shift (105 nm), significant fluorescence enhancement (59-fold), high sensitivity, good biocompatibility and so on. Biological experiments showed that the probe could target mitochondria and detect viscosity alterations in HeLa cells. Moreover, it has been successfully utilized to monitor viscosity changes induced by lipopolysaccharides (LPS) in inflammatory zebrafishes and living mice, which further underscored the capacity of GX-VS to explore fluctuations in viscosity within living organisms.


Fluorescent Dyes , Zebrafish , Humans , Mice , Animals , HeLa Cells , Viscosity , Mitochondria
12.
Anal Chem ; 96(1): 355-363, 2024 01 09.
Article En | MEDLINE | ID: mdl-38113399

Ferroptosis has been confirmed as a potential mediator and an indicator of the severity of liver injury. Despite the fruitful results, there are still two deficiencies in the research on the association between ferroptosis and liver injury. First, iron ions are usually selected as the target bioanalyte, but its detection based on a fluorescent probe is interfered with by specific chemical reaction mechanisms, leading to low sensitivity and poor physiological stability. Second, more efforts were focused on the harmful effects of ferroptosis on liver injury and less involved in the therapeutic value of ferroptosis for liver injury. Hence, in this work, we proposed a new nonreactive analyte (mitochondrial viscosity) as an analysis marker, which can circumvent the challenges caused by specific reaction mechanisms of iron ions. Meanwhile, we constructed a novel label-detection integrated visual probe (VPF) to explore the feasibility of ferroptosis in the treatment of liver injury. As expected, we not only successfully traced the dynamic changes in mitochondrial viscosity but also visualized the changes in cell morphology during induced and inhibited ferroptosis. Conspicuously, this work revealed that liver injury can be alleviated by regulating ferroptosis, confirming the therapeutic value of ferroptosis in liver injury. In addition, a complex biological communication network between ferroptosis and liver injury was constructed by western blotting, providing an important theoretical mechanism for revealing their double-edged sword relationship. This study not only provides a new strategy for studying the complex relationship between ferroptosis and liver injury but also facilitates the future treatment of liver injury.


Ferroptosis , Blotting, Western , Iron , Liver , Ions
13.
J Mater Chem B ; 11(48): 11620-11625, 2023 12 13.
Article En | MEDLINE | ID: mdl-38051637

As highly dynamic organelles, lysosomes are involved in various physiological processes. The viscosity of lysosomes plays critical roles in maintaining their normal physiological function and abnormal variations of viscosity are associated with many diseases. Monitoring the changes of lysosomal viscosity could contribute to understanding lysosome-related physiological and pathological processes. In this work, based on an indole fluorophore and fluorescent polymer, poly(2-hydroxyethyl methacrylate) (PHEM), a new polymeric fluorescent probe, In-PHEM, with dual responsive sites for tracking changes of lysosomal viscosity is presented. In-PHEM showed excellent fluorescence properties and high photostability. With this robust probe, the variation of the lysosomal viscosity in cells under different physiological conditions, including inducer stimulation, the process of starvation and apoptosis, was monitored using dual-channel imaging. Therefore, this work may provide a powerful tool for monitoring changes of lysosomal viscosity and helping to understand the relationship between the viscosity changes of lysosomes and their related diseases.


Diagnostic Imaging , Fluorescent Dyes , Humans , Viscosity , HeLa Cells , Lysosomes
14.
Anal Chem ; 95(49): 18029-18038, 2023 12 12.
Article En | MEDLINE | ID: mdl-38019809

Dual-mode imaging of fluorescence-photoacoustics has emerged as a promising technique for biomedical applications. However, conventional dual-mode imaging is based on single-wavelength excitation, which often results in opposing fluorescence and photoacoustic signals due to competing photophysical processes in one agent, rendering the maximization of both signals infeasible. To meet this challenge, we herein propose a new strategy by using the dual-excitation approach, where one excitation wavelength generates a fluorescence signal and the other produces a photoacoustic signal, thus achieving simultaneous maximization of both signals in one fluorescence-photoacoustic molecule. Based on this strategy, three dye molecules were employed for comparison, and it was surprising to find that QHD dye with two types of excitation wavelengths could generate fluorescence and photoacoustic signals, respectively. Furthermore, this strategy was successfully implemented in dual-mode imaging of rheumatoid arthritis mice. Importantly, this study emphasizes a new design guideline for the maximization of fluorescence-photoacoustic signals by using dual-wavelength-independent excitation.


Photoacoustic Techniques , Mice , Animals , Photoacoustic Techniques/methods , Spectrum Analysis
15.
J Mater Chem B ; 11(47): 11310-11318, 2023 12 06.
Article En | MEDLINE | ID: mdl-37982342

The intensive investigation of chemodynamic therapy (CDT) for tumor eradication revealed that the therapeutic effects of this ROS-mediated therapy are limited by endogenous reductants and inefficient Fenton-like reactions. In this study, we developed a new Fe/Cu-AuNP-PEG nanocomposite to enhance CDT and provide a synergistic treatment for tumors. The Fe/Cu-AuNP-PEG nanocomposite demonstrated effective ˙OH production and high photothermal conversion efficiency under 808 nm illumination, which promoted the ˙OH production, thereby enhancing the CDT efficacy and exhibiting a synergistic treatment for cancer. More importantly, the Fe/Cu-AuNP-PEG nanocomposite showed the ability to deplete GSH and catalyze glucose to generate H2O2, which facilitated the Fenton-like reaction and reduced the antioxidant properties of tumors, further improving the efficacy of CDT. Therefore, the Fe/Cu-AuNP-PEG nanocomposite, with horseradish peroxidase-like, glutathione peroxidase-like, and glucose oxidase-like activities, is a promising anti-tumor agent for integrating enhanced CDT and photothermal therapy (PTT) with the enhancement of synergistic therapeutic effects.


Nanocomposites , Neoplasms , Tumor Microenvironment , Hydrogen Peroxide , Glucose Oxidase , Antioxidants , Neoplasms/drug therapy
16.
Anal Chem ; 95(42): 15795-15802, 2023 10 24.
Article En | MEDLINE | ID: mdl-37815496

Lysosomes are one of the important organelles within cells, and their dynamic movement processes are associated with many biological events. Therefore, real-time monitoring of lysosomal dynamics processes has far-reaching implications. A lysosome-targeted fluorescent probe N(CH2)3-BD-PZ is proposed for real-time monitoring of lysosomal kinetic motility. Using this probe, the dynamic process of lysosomes under starvation induction was successfully explored through fluorescence imaging. Importantly, we observed a new pattern of lysosomal dynamic movement, in which an irregular lysosome was slowly cleaved into two different-sized touching lysosomes and then fused to form a new round lysosome. This research provides a powerful fluorescence tool to understand the dynamic motility of intracellular lysosomes under fluorescence imaging.


Fluorescent Dyes , Lysosomes , Humans , HeLa Cells , Optical Imaging , Autophagy
17.
Anal Chem ; 95(44): 16279-16288, 2023 11 07.
Article En | MEDLINE | ID: mdl-37870556

Developing a nanotheranostic with a high sensing performance and efficient therapy was significant in cancer diagnosis and treatment. Herein, a Au nanoparticle and hairpin-loaded photosensitive metal-organic framework (PMOF@AuNP/hairpin) nanotheranostic was constructed by growing AuNPs on PMOF in situ and then attaching hairpins. On the one hand, the PMOF@AuNP/hairpin nanotheranostic could effectively transfer O2 into ROS, facilitating efficient PDT. Additionally, the nanotheranostic possessed catalase-like activity, which could effectively catalyze H2O2 to generate O2, thus achieving O2-evolving PDT and significantly enhancing the antitumor effect of PDT in vivo. On the other hand, the nanotheranostic showed a high loading efficiency of hairpins and achieved the sensitive and selective detection of miR-21 both in living cells and in vivo. Moreover, the nanotheranostic could dynamically monitor the miR-21 level. Due to the excellent imaging performance, the nanotheranostic could recognize cancer cells and might provide important information on cancer progression for PDT. The developed PMOF@AuNP/hairpin nanotheranostic provided a useful tool for tumor diagnosis and antitumor therapy.


Metal Nanoparticles , MicroRNAs , Neoplasms , Photochemotherapy , Humans , Photochemotherapy/methods , Gold , Hydrogen Peroxide , Theranostic Nanomedicine , Photosensitizing Agents , Cell Line, Tumor
18.
Am J Transl Res ; 15(7): 4629-4638, 2023.
Article En | MEDLINE | ID: mdl-37560230

OBJECTIVE: To analyze the role of health education in the management of chronic diseases in older people in the community and the countermeasures. METHODS: After establishing a community health management model for chronic diseases of the elderly based on references, a prospective study was conducted on 120 elderly patients with chronic diseases registered in Xinyang Zhongxing Community Health Service Center, Xixiangtang District, Nanning City from January 2019 to June 2020. The lottery method was used to divide all patients into observation and control groups. Patients in the control group received conventional chronic disease health management, while the observation group received an additional community-based chronic disease health education model for the elderly on the basis of care given to the control group. The change in chronic disease prevention knowledge mastering, medical compliance behavior score, anxiety and depression score, and quality of life score before and after the intervention were compared. RESULTS: After intervention, the awareness rates of patients in the observation group on the clinical manifestations, diagnostic criteria, high-risk behaviors, susceptible population and preventive measures of chronic diseases were significantly higher than that in the control group (all P<0.05), the scores of diet, exercise and lifestyle were significantly higher than those in the control group (all P<0.05), and the scores of depression and anxiety were significantly lower than those in the control group (all P<0.05). The scores of mental function, physical function and social function were significantly higher than those of control group (all P<0.05). CONCLUSION: Health education intervention play an important role in community management of chronic diseases in elderly patients. It effectively improves patients' understanding of the disease and enhances their compliance to medical advice, while reducing patients' anxiety, depression mood and improving their quality of life.

19.
Luminescence ; 38(11): 1977-1983, 2023 Nov.
Article En | MEDLINE | ID: mdl-37555579

Fluorescence nanosensors based on functional nucleic acids have been explored as a powerful sensing platform for disease-relevant miRNAs. This work developed a new hybrid nanosensor (Zr-B) through coordination-driven self-assembly of Zr ions and beacons. The prepared nanosensor exhibited high loading efficiency of beacons and could achieve sensitive and specific detection for miRNAs. The hybrid nanosensor could transfer beacons into living cells efficiently and maintain high stability and biocompatibility in the biological environment, achieving effective miRNA fluorescence imaging in living cells. Therefore, the resultant nanosensor holds potential for applications in disease diagnostics.


MicroRNAs , Fluorescence Resonance Energy Transfer/methods , Ions , Optical Imaging
20.
Anal Chem ; 95(31): 11777-11784, 2023 08 08.
Article En | MEDLINE | ID: mdl-37506347

Isothermal, enzyme-free amplification techniques, such as the hybridization chain reaction (HCR) and catalytic hairpin assembly (CHA), have gained increasing attention for miRNA analysis. However, current methodological challenges, including slow kinetics, low amplification efficiency, difficulties in efficient cellular internalization of DNA probes, and concerns regarding the intracellular stability of nucleic acids, need to be addressed. To this end, we propose a novel strategy for sensitive miRNA detection based on a three-dimensional (3D) CHA-HCR system. This system comprises two DNA nanospheres, named DS-13 and DS-24, which are functionalized with CHA and HCR hairpins. Target miR-21 initiates CHA between the two nanospheres, thereby activating downstream HCR and bringing cyanine 3 (Cy3) and cyanine 5 (Cy5) into proximity. The 3D CHA-HCR process leads to the formation of large DNA aggregates and the generation of fluorescence resonance energy transfer signals. In this strategy, the employment of a cascaded reaction and spatial confinement effect improve sensitivity and kinetics, while the use of DNA nanocarriers facilitates cellular delivery and protects nucleic acid probes. The experimental results in vitro, in living cells, and in clinical tissue samples demonstrated the desirable sensing performance. Collectively, this approach holds promise as a valuable tool for cancer diagnosis and biomedical research.


Nanospheres , Nucleic Acid Hybridization , Nucleic Acid Hybridization/methods , Nanospheres/chemistry , Time Factors , DNA/chemistry , MicroRNAs/chemistry , Cell Survival , Humans , Cell Line, Tumor
...