Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int Immunopharmacol ; 137: 112337, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38861915

RESUMEN

BACKGROUND: Allergic Rhinitis (AR) is a prevalent chronic non-infectious inflammation affecting the nasal mucosa. NLRP3-mediated pyroptosis of epithelial cells plays a pivotal role in AR pathogenesis. Herein, we evaluated the impact of the long non-coding RNA nuclear paraspeckle assembly transcript 1 (lncRNA NEAT1) on NLR family pyrin domain containing 3 (NLRP3)-mediated pyroptosis in AR. METHODS: Nasal inflammation levels in ovalbumin (OVA)-induced AR mice were assessed using HE staining, and NLRP3 expression was evaluated through immunohistochemistry. ELISA was utilized to detect OVA-specific IgE, IL-6, IL-5, and inflammatory cytokines (IL-1ß, IL-18). Human nasal epithelial cells (HNEpCs) stimulated with IL4/IL13 were used to analyze the mRNA and protein levels of associated genes utilizing RT-qPCR and western blot, respectively. Cell viability and pyroptosis were assessed by CCK-8 and flow cytometry. The targeting relationship between NEAT1, PTBP1 and FOXP1 were analyzed by RIP and RNA pull down assays. FISH and IF analysis were performed to assess the co-localization of NEAT1 and PTBP1. RESULTS: In both the AR mouse and cellular models, increased levels of NEAT1, PTBP1 and FOXP1 were observed. AR mice exhibited elevated inflammatory infiltration and pyroptosis, evidenced by enhanced expressions of OVA-specific IgE, IL-6, and IL-5, NLRP3, Cleaved-caspase 1, GSDMD-N, IL-1ß and IL-18. Functional assays revealed that knockdown of PTBP1 or NEAT1 inhibited pyroptosis while promoting the proliferation of IL4/IL13-treated HNEpCs. Mechanistically, NEAT1 directly interacted with PTBP1, thereby maintaining FOXP1 mRNA stability. Rescue assays demonstrated that FOXP1 upregulation reversed the inhibitory effects of silencing NEAT1 or PTBP1 on IL4/IL13-stimulated pyroptosis activation in HNEpCs. CONCLUSION: NEAT1 acts as a RNA scaffold for PTBP1, activating the PTBP1/FOXP1 signaling cascade, subsequently triggering NLRP3-mediated pyroptosis in HNEpCs, and ultimately promoting AR progression. These findings highlight some new insights into the pathogenesis of AR.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...