Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 73
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167132, 2024 Jun.
Article En | MEDLINE | ID: mdl-38565386

The Epstein-Barr virus (EBV) is implicated in several cancers, including EBV-associated gastric cancer (EBVaGC). This study focuses on EBV-encoded BALF1 (BamH1 A fragment leftward reading frame 1), a key apoptosis regulator in EBV-related cancers, whose specific impact on EBVaGC was previously unknown. Our findings indicate that BALF1 overexpression in gastric cancer cells significantly enhances their proliferation, migration, and resistance to chemotherapy-induced apoptosis, confirming BALF1's oncogenic potential. A novel discovery is that BALF1 undergoes degradation via the ubiquitin-proteasome pathway. Through analysis of 69 deubiquitinating enzymes (DUBs), ovarian tumor protease (OTU) domain-containing protein 1 (OTUD1) emerged as a vital regulator for maintaining BALF1 protein stability. Furthermore, BALF1 was found to play a role in regulating the stability of the B-cell lymphoma-2 (Bcl-2) protein, increasing its levels through deubiquitination. This mechanism reveals BALF1's multifaceted oncogenic role in gastric cancer, as it contributes both directly and indirectly to cancer progression, particularly by stabilizing Bcl-2, known for its anti-apoptotic characteristics. These insights significantly deepen our understanding of EBV's involvement in the pathogenesis of gastric cancer. The elucidation of OTUD1's role in BALF1 regulation and its influence on Bcl-2 stabilization provide new avenues for therapeutic intervention in EBVaGC, bridging the gap between viral oncogenesis and cellular protein regulation and offering a more holistic view of gastric cancer development under the influence of EBV.


Apoptosis , Proto-Oncogene Proteins c-bcl-2 , Stomach Neoplasms , Ubiquitination , Humans , Stomach Neoplasms/pathology , Stomach Neoplasms/virology , Stomach Neoplasms/metabolism , Stomach Neoplasms/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Cell Line, Tumor , Herpesvirus 4, Human/metabolism , Herpesvirus 4, Human/genetics , Viral Proteins/metabolism , Viral Proteins/genetics , Cell Proliferation , Ubiquitin-Specific Proteases/metabolism , Ubiquitin-Specific Proteases/genetics , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/metabolism , Epstein-Barr Virus Infections/pathology , Epstein-Barr Virus Infections/genetics , Protein Stability , Cell Movement , Animals , Deubiquitinating Enzymes/metabolism , Deubiquitinating Enzymes/genetics , Viral Regulatory and Accessory Proteins
2.
Mol Ther ; 32(4): 920-934, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38341611

CRISPR-Cas9 is the most commonly used genome-editing tool in eukaryotic cells. To modulate Cas9 entry into the nucleus to enable control of genome editing, we constructed a light-controlled CRISPR-Cas9 system to control exposure of the Cas9 protein nuclear localization signal (NLS). Although blue-light irradiation was found to effectively control the entry of Cas9 protein into the nucleus with confocal microscopy observation, effective gene editing occurred in controls with next-generation sequencing analysis. To further clarify this phenomenon, a CRISPR-Cas9 editing system without the NLS and a CRISPR-Cas9 editing system containing a nuclear export signal were also constructed. Interestingly, both Cas9 proteins could achieve effective editing of target sites with significantly reduced off-target effects. Thus, we speculated that other factors might mediate Cas9 entry into the nucleus. However, NLS-free Cas9 was found to produce effective target gene editing even following inhibition of cell mitosis to prevent nuclear import caused by nuclear membrane disassembly. Furthermore, multiple nucleus-localized proteins were found to interact with Cas9, which could mediate the "hitchhiking" of NLS-free Cas9 into the nucleus. These findings will inform future attempts to construct controllable gene-editing systems and provide new insights into the evolution of the nucleus and compatible protein functions.


CRISPR-Cas Systems , Gene Editing , CRISPR-Associated Protein 9/genetics , Nuclear Localization Signals/genetics
3.
J Cosmet Dermatol ; 23(5): 1777-1799, 2024 May.
Article En | MEDLINE | ID: mdl-38268224

BACKGROUND: Acne vulgaris is a widespread chronic inflammatory dermatological condition. The precise molecular and genetic mechanisms of its pathogenesis remain incompletely understood. This research synthesizes existing databases, targeting a comprehensive exploration of core genetic markers. METHODS: Gene expression datasets (GSE6475, GSE108110, and GSE53795) were retrieved from the GEO. Differentially expressed genes (DEGs) were identified using the limma package. Enrichment analyses were conducted using GSVA for pathway assessment and clusterProfiler for GO and KEGG analyses. PPI networks and immune cell infiltration were analyzed using the STRING database and ssGSEA, respectively. We investigated the correlation between hub gene biomarkers and immune cell infiltration using Spearman's rank analysis. ROC curve analysis validated the hub genes' diagnostic accuracy. miRNet, TarBase v8.0, and ChEA3 identified miRNA/transcription factor-gene interactions, while DrugBank delineated drug-gene interactions. Experiments utilized HaCaT cells stimulated with Propionibacterium acnes, treated with retinoic acid and methotrexate, and evaluated using RT-qPCR, ELISA, western blot, lentiviral transduction, CCK-8, wound-healing, and transwell assays. RESULTS: There were 104 genes with consistent differences across the three datasets of paired acne and normal skin. Functional analyses emphasized the significant enrichment of these DEGs in immune-related pathways. PPI network analysis pinpointed hub genes PTPRC, CXCL8, ITGB2, and MMP9 as central players in acne pathogenesis. Elevated levels of specific immune cell infiltration in acne lesions corroborated the inflammatory nature of the disease. ROC curve analysis identified the acne diagnostic potential of four hub genes. Key miRNAs, particularly hsa-mir-124-3p, and central transcription factors like TFEC were noted as significant regulators. In vitro validation using HaCaT cells confirmed the upregulation of hub genes following Propionibacterium acnes exposure, while CXCL8 knockdown reduced pro-inflammatory cytokines, cell proliferation, and migration. DrugBank insights led to the exploration of retinoic acid and methotrexate, both of which mitigated gene expression upsurge and inflammatory mediator secretion. CONCLUSION: This comprehensive study elucidated pivotal genes associated with acne pathogenesis, notably PTPRC, CXCL8, ITGB2, and MMP9. The findings underscore potential biomarkers, therapeutic targets, and the therapeutic potential of agents like retinoic acid and methotrexate. The congruence between bioinformatics and experimental validations suggests promising avenues for personalized acne treatments.


Acne Vulgaris , Computational Biology , Humans , Acne Vulgaris/genetics , Acne Vulgaris/drug therapy , Acne Vulgaris/diagnosis , Acne Vulgaris/immunology , Genetic Markers , Gene Regulatory Networks , Protein Interaction Maps/genetics , Gene Expression Profiling , Precision Medicine , Methotrexate/therapeutic use , Tretinoin/administration & dosage , MicroRNAs/genetics , MicroRNAs/metabolism , Propionibacterium acnes , HaCaT Cells , Databases, Genetic
4.
Cell Death Dis ; 14(12): 796, 2023 12 05.
Article En | MEDLINE | ID: mdl-38052820

Acute myeloid leukemia (AML) cell survival and chemoresistance are influenced by the existence of bone marrow mesenchymal stem cells (BMMSCs); however, the pathways by which BMMSCs contribute to these processes remain unclear. We earlier revealed that methyltransferase-like 3 (METTL3) expression is significantly reduced in AML BMMSCs and that METTL3 mediates BMMSC adipogenesis to promote chemoresistance in human AML cell lines in vitro. In this investigation, we evaluated the METTL3 function in vivo. Mice exhibiting a conditional removal of Mettl3 in BMMSCs were developed by mating Prrx1-CreERT2;Mettl3fl/+ mice with Mettl3fl/fl mice using the CRISPR-Cas9 system. The Mettl3 deletion increased bone marrow adiposity, enhanced disease progression in the transplantation-induced MLL-AF9 AML mouse model, and chemoresistance to cytarabine. The removal of Mettl3 in BMMSCs resulted in a significant increase in BMMSC adipogenesis. This effect was attributed to the downregulation of AKT1 expression, an AKT serine/threonine kinase 1, in an m6A-dependent manner. The development of chemoresistance in AML is linked to the promoted adipogenesis of BMMSCs. We conclude that METTL3 expression in BMMSCs has a critical function in limiting AML progression and chemoresistance, providing a basis for the progression of therapeutic approaches for AML.


Leukemia, Myeloid, Acute , Mesenchymal Stem Cells , Mice , Humans , Animals , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Bone Marrow , Methyltransferases/genetics , Methyltransferases/metabolism , Mesenchymal Stem Cells/metabolism
5.
Front Oncol ; 13: 1154107, 2023.
Article En | MEDLINE | ID: mdl-37664026

Background: Despite numerous observational studies on the association between serum 25-Hydroxyvitamin D levels and cutaneous melanoma, causal inferences remain ambiguous due to confounding and reverse causality. This study aimed to elucidate the causal relationship between serum 25-Hydroxyvitamin D levels and melanoma incidence using Mendelian randomization (MR). Methods: A two-sample MR was conducted using genetic variants associated with serum 25-Hydroxyvitamin D levels as instrumental variables. Summary statistics for these variants were derived from genome-wide association studies, and those for melanoma risk were obtained from a comprehensive melanoma case-control study. Robustness of the results was assessed through sensitivity analyses, including the "leave-one-out" approach and tests for potential pleiotropy. Results: The MR analysis provided substantial evidence of a positive causal relationship between serum 25-Hydroxyvitamin D levels and the incidence of cutaneous melanoma, suggesting that each unit increase in serum 25-Hydroxyvitamin D levels corresponds with an increased risk of melanoma. Tests for pleiotropy showed minimal effects, and the sensitivity analysis confirmed no disproportionate influence by any individual single nucleotide polymorphism (SNP). Conclusion: The findings indicated a potentially causal positive association between serum 25-Hydroxyvitamin D levels and melanoma risk, challenging traditional beliefs about vitamin D's role in melanoma. This emphasizes the need for a balanced and personalized approach to vitamin D supplementation and sun exposure, particularly in high-risk populations. These results should be interpreted with caution due to potential unrecognized pleiotropy and confounding factors. Future research should focus on validating these findings in diverse populations and exploring underlying biological mechanisms.

6.
Int J Mol Sci ; 24(1)2023 Jan 02.
Article En | MEDLINE | ID: mdl-36614238

Sialic acid-binding immunoglobulin-like lectin 15 (Siglec-15) has been identified as a crucial immune suppressor in human cancers, comparable to programmed cell death 1 ligand (PD-L1). However, the regulatory mechanisms underlying its transcriptional upregulation in human cancers remain largely unknown. Here, we show that the transcription factors ETS-1 and ETS-2 bound to the Siglec-15 promoter to enhance transcription and expression of Siglec-15 in hepatocellular carcinoma (HCC) cells and that transforming growth factor ß-1 (TGF-ß1) upregulated the expression of ETS-1 and ETS-2 and facilitated the binding of ETS-1 and ETS-2 to the Siglec-15 promoter. We further demonstrate that TGF-ß1 activated the Ras/C-Raf/MEK/ERK1/2 signaling pathway, leading to phosphorylation of ETS-1 and ETS-2, which consequently upregulates the transcription and expression of Siglec-15. Our study defines a detailed molecular profile of how Siglec-15 is transcriptionally regulated which may offer significant opportunity for therapeutic intervention on HCC immunotherapy.


Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Cell Line , Sialic Acid Binding Immunoglobulin-like Lectins
7.
Hum Gene Ther ; 34(3-4): 112-128, 2023 02.
Article En | MEDLINE | ID: mdl-36453226

The CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-based genome editing system exhibits marked potential for both gene editing and gene therapy, and its continuous improvement contributes to its great clinical potential. However, the largest hindrance to its application in clinical practice is the presence of off-target effects (OTEs). Thus, in addition to continuous optimization of the CRISPR system to reduce and eventually eliminate OTEs, further development of unbiased genome-wide detection of OTEs is key for its successful clinical application. This article summarizes detection strategies for OTEs of different CRISPR systems, to provide detailed guidance for the detection of OTEs in CRISPR-based genome editing.


CRISPR-Cas Systems , Gene Editing , Genome , Genetic Therapy
8.
J Virol ; 96(23): e0102022, 2022 12 14.
Article En | MEDLINE | ID: mdl-36394315

Hepatitis B virus (HBV) is a major risk factor for serious liver diseases. The liver plays a unique role in controlling carbohydrate metabolism to maintain the glucose level within the normal range. Chronic HBV infection has been reported to associate with a high prevalence of diabetes. However, the detailed molecular mechanism underlying the potential association remains largely unknown. Here, we report that liver-targeted delivery of small HBV surface antigen (SHBs), the most abundant viral protein of HBV, could elevate blood glucose levels and impair glucose and insulin tolerance in mice by promoting hepatic gluconeogenesis. Hepatocytes with SHB expression also exhibited increased glucose production and expression of gluconeogenic genes glucose-6-phosphatase (G6pc) and phosphoenolpyruvate carboxykinase (PEPCK) in response to glucagon stimulation. Mechanistically, SHBs increased cellular levels of cyclic AMP (cAMP) and consequently activated protein kinase A (PKA) and its downstream effector cAMP-responsive element binding protein (CREB). SHBs-induced activation of CREB enhanced transcripts of gluconeogenic genes, thus promoting hepatic gluconeogenesis. The elevated cAMP level resulted from increased transcription activity and expression of adenylyl cyclase 1 (AC1) by SHBs through a binary E-box factor binding site (BEF). Taken together, we unveiled a novel pathogenic role and mechanism of SHBs in hepatic gluconeogenesis, and these results might highlight a potential target for preventive and therapeutic intervention in the development and progression of HBV-associated diabetes. IMPORTANCE Chronic HBV infection causes progressive liver damage and is found to be a risk factor for diabetes. However, the mechanism in the regulation of glucose metabolism by HBV remains to be established. In the current study, we demonstrate for the first time that the small hepatitis B virus surface antigen (SHBs) of HBV elevates AC1 transcription and expression to activate cAMP/PKA/CREB signaling and subsequently induces the expression of gluconeogenic genes and promotes hepatic gluconeogenesis both in vivo and in vitro. This study provides a direct link between HBV infection and diabetes and implicates that SHBs may represent a potential target for the treatment of HBV-induced metabolic disorders.


Gluconeogenesis , Hepatitis B Surface Antigens , Hepatitis B, Chronic , Animals , Mice , Antigens, Surface/metabolism , Cyclic AMP/metabolism , Cyclic AMP/pharmacology , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Glucagon/metabolism , Glucagon/pharmacology , Gluconeogenesis/genetics , Glucose/metabolism , Hepatitis B Surface Antigens/metabolism , Hepatitis B virus/metabolism , Hepatitis B, Chronic/metabolism , Hepatocytes/metabolism , Liver/metabolism , Mice, Inbred C57BL
9.
Front Cardiovasc Med ; 9: 874912, 2022.
Article En | MEDLINE | ID: mdl-35571188

Circulating proteins play functional roles in various biological processes and disease pathogenesis. The aim of this study was to highlight circulating proteins associated with aortic aneurysm and dissection (AAD) and spontaneous coronary artery dissection (SCAD). We examined the associations of circulating molecule levels with SCAD by integrating data from a genome-wide association study (GWAS) of CanSCAD and 7 pQTL studies. Mendelian randomization (MR) analysis was applied to examine the associations between circulating molecule levels and AAD by using data from UK Biobank GWAS and pQTL studies. The SCAD-associated SNPs in 1q21.2 were strongly associated with circulating levels of extracellular matrix protein 1 (ECM1) and 25 other proteins (encoded by CTSS, CAT, CNDP1, KNG1, SLAMF7, TIE1, CXCL1, MBL2, ESD, CXCL16, CCL14, KCNE5, CST7, PSME1, GPC3, MAP2K4, SPOCK3, LRPPRC, CLEC4M, NOG, C1QTNF9, CX3CL1, SCP2D1, SERPINF2, and FN1). These proteins were enriched in biological processes such as regulation of peptidase activity and regulation of cellular protein metabolic processes. Proteins (FGF6, FGF9, HGF, BCL2L1, and VEGFA) involved in the Ras signaling pathway were identified to be related to AAD. In addition, SCAD- and AAD-associated SNPs were associated with cytokine and lipid levels. MR analysis showed that circulating ECM1, SPOCK3 and IL1b levels were associated with AAD. Circulating levels of low-density lipoprotein cholesterol and small very-low-density lipoprotein particles were strongly associated with AAD. The present study found associations between circulating proteins and lipids and SCAD and AAD. Circulating ECM1 and low-density lipoprotein cholesterol may play a role in the pathology of SCAD and AAD.

10.
Front Cardiovasc Med ; 9: 762468, 2022.
Article En | MEDLINE | ID: mdl-35425820

Hypertension is a key risk factor for spontaneous coronary artery dissection (SCAD) and aortic dilation. Circulating proteins play key roles in a range of biological processes and represent a major source of druggable targets. The aim of this study was to identify circulating proteins that were associated with blood pressure (BP), SCAD and aortic dilation. We identified shared genetic variants of BP and SCAD in genome-wide association studies, searched for circulating protein affected by these variants and examined the association of circulating protein levels with BP, aortic aneurysm and dissection (AAD) and aortic diameters by integrating data from circulating protein quantitative trait loci (pQTL) studies and genome wide association study (GWAS) in individuals from the UK Biobank using two-sample Mendelian randomization analysis methods. Single nucleotide polymorphisms (SNPs) in JAG1, ERI1, ULK4, THSD4, CMIP, COL4A2, FBN1, FAM76B, FGGY, NUS1, and HNF4G, which were related to extracellular matrix components, were associated with both BP and SCAD. We found 49 significant pQTL signals among these SNPs. The regulated proteins were encoded by MMP10, IL6R, FIGF, MMP1, CTSB, IGHG1, DSG2, TTC17, RETN, POMC, SCARF2, RELT, and GALNT16, which were enriched in biological processes such as collagen metabolic process and multicellular organism metabolic process. Causal associations between BP and AAD and aortic diameters were detected. Significant associations between circulating levels of cathepsin B, a well-known prorenin processing enzyme, and BP and aortic diameters were identified by using several Mendelian randomization analysis methods and were validated by independent data. Conclusion: The present study identified the association between circulating cathepsin B and BP and aortic diameters. The findings indicated that BP-associated genetic variants may influence aortic dilation risk by circulating proteins that regulate BP.

11.
Cancer Lett ; 532: 215582, 2022 04 28.
Article En | MEDLINE | ID: mdl-35122876

Interaction between stromal cells and acute myeloid leukemia (AML) cells in bone marrow (BM) is known to contribute importantly to chemoresistance and disease recurrence. Therefore, disruption of a crosstalk between AML cells and BM microenvironment may offer a promising therapeutic strategy for AML treatment. Here, we demonstrate that in a niche-like co-culture system, AML cells took up functional mitochondria from bone marrow stromal cells (BMSCs) and inhibition of such mitochondrial transfer by metformin, the most commonly prescribed drug for type 2 diabetes mellitus, significantly enhanced the chemosensitivity of AML cells co-cultured with BMSCs. The chemo-sensitizing effect of metformin was acted through reducing the mitochondrial transfer and mitochondrial oxidative phosphorylation (OXPHOS) in the recipient AML cells. In addition, metformin potentiated the antitumor efficacy of cytarabine (Ara-C) in vivo in an NCG immunodeficient mouse xenograft model by inhibiting the mitochondrial transfer and OXPHOS activity in the engrafted human AML cells. Altogether, this study identifies a potential application of metformin in sensitizing AML cells to chemotherapy and unveils a novel mechanism by which metformin executes such effect via blocking the mitochondrial transfer from stromal cells to AML cells.


Diabetes Mellitus, Type 2 , Leukemia, Myeloid, Acute , Metformin , Animals , Cytarabine/pharmacology , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Metformin/pharmacology , Metformin/therapeutic use , Mice , Mice, Nude , Mice, SCID , Mitochondria , Stromal Cells/pathology , Tumor Microenvironment
12.
J Virol ; 96(4): e0197521, 2022 02 23.
Article En | MEDLINE | ID: mdl-34910612

Hepatocellular carcinoma (HCC) is a hypervascular tumor, and accumulating evidence has indicated that stimulation of angiogenesis by hepatitis B virus (HBV) may contribute to HCC malignancy. The small protein of hepatitis B virus surface antigen (HBsAg), SHBs, is the most abundant HBV protein and has a close clinical association with HCC; however, whether SHBs contributes to HCC angiogenesis remains unknown. This study reports that the forced expression of SHBs in HCC cells promoted xenograft tumor growth and increased the microvessel density (MVD) within the tumors. Consistently, HBsAg was also positively correlated with MVD counts in HCC patients' specimens. The conditioned media from the SHBs-transfected HCC cells increased the capillary tube formation and migration of human umbilical vein endothelial cells (HUVECs). Intriguingly, the overexpression of SHBs increased vascular endothelial growth factor A (VEGFA) expression at both the mRNA and protein levels. Higher VEGFA expression levels were also observed in xenograft tumors transplanted with SHBs-expressing HCC cells and in HBsAg-positive HCC tumor tissues than in their negative controls. As expected, in the culture supernatants, the secretion of VEGFA was also significantly enhanced from HCC cells expressing SHBs, which promoted HUVEC migration and vessel formation. Furthermore, all three unfolded protein response (UPR) sensors, inositol-requiring enzyme 1α (IRE1α), protein kinase RNA-like endoplasmic reticulum (ER) kinase (PERK), and activating transcription factor 6 (ATF6), associated with ER stress were found to be activated in SHBs-expressing cells and correlated with VEGFA protein expression and secretion. Taken together, these results suggest an important role of SHBs in HCC angiogenesis and may highlight a potential target for preventive and therapeutic intervention for HBV-related HCC and its malignant progression. IMPORTANCE Chronic hepatitis B virus infection is one of the important risk factors for the development and progression of hepatocellular carcinoma (HCC). HCC is characteristic of hypervascularization even at early phases of the disease due to the overexpression of angiogenic factors like vascular endothelial growth factor A (VEGFA). However, a detailed mechanism of HBV-induced angiogenesis remains to be established. In this study, we demonstrate for the first time that the most abundant HBV protein, i.e., small surface antigen (SHBs), can enhance the angiogenic capacity of HCC cells by the upregulation of VEGFA expression both in vitro and in vivo. Mechanistically, SHBs induced endoplasmic reticulum (ER) stress, which consequently activated unfolded protein response (UPR) signaling to increase VEGFA expression and secretion. This study suggests that SHBs plays an important proangiogenic role in HBV-associated HCC and may represent a potential target for antiangiogenic therapy in HCC.


Carcinoma, Hepatocellular/pathology , Endoplasmic Reticulum Stress , Hepatitis B Surface Antigens/metabolism , Liver Neoplasms/pathology , Neovascularization, Pathologic/pathology , Vascular Endothelial Growth Factor A/metabolism , Animals , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/virology , Cell Line, Tumor , Hepatitis B virus/immunology , Hepatitis B virus/pathogenicity , Hepatitis B, Chronic/metabolism , Hepatitis B, Chronic/pathology , Hepatitis B, Chronic/virology , Human Umbilical Vein Endothelial Cells , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/virology , Mice , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/virology , Signal Transduction , Unfolded Protein Response , Vascular Endothelial Growth Factor A/genetics , Xenograft Model Antitumor Assays
13.
Front Genet ; 12: 696562, 2021.
Article En | MEDLINE | ID: mdl-34276799

RNA modification plays important roles in many biological processes such as gene expression control. Genetic variants that affect RNA modification may have functional roles in aortic dissection. The aim of this study was to identify RNA modifications related to spontaneous coronary artery dissection (SCAD). We examined the association of RNA modification-associated single-nucleotide polymorphisms (RNAm-SNPs) with SCAD in summary data from a genome-wide association study (GWAS) of European descent (270 SCAD cases and 5,263 controls). Furthermore, we performed expression quantitative loci (eQTL) and protein quantitative loci (pQTL) analyses for the RNAm-SNPs using publicly available data. Functional enrichment and protein-protein interaction analyses were performed for the identified proteins. We found 11,464 unique RNAm-SNPs in the SCAD GWAS dataset, and 519 were nominally associated with SCAD. Nine RNAm-SNPs were associated with SCAD at p < 0.001, and among them, seven were N6-methyladenosine (m6A) methylation-related SNPs, one (rs113664950 in HLA-DQB1) was m7G-associated SNP, and one [rs580060 in the 3'-UTR of Mitochondrial Ribosomal Protein S21 (MRPS21)] was A-to-I modification SNP. The genome-wide significant SNP rs3818978 (SCAD association p = 5.74 × 10-10) in the 5'-UTR of MRPS21 was related to m6A modification. These nine SNPs all showed eQTL effects, and six of them were associated with circulating protein or metabolite levels. The related protein-coding genes were enriched in specific Gene Ontology (GO) terms such as extracellular space, extracellular region, defense response, lymphocyte migration, receptor binding and cytokine receptor binding, and so on. The present study found the associations between RNAm-SNPs and SCAD. The findings suggested that RNA modification may play functional roles in SCAD.

14.
Cancer Lett ; 519: 211-225, 2021 10 28.
Article En | MEDLINE | ID: mdl-34311033

The transient receptor potential canonical (TRPC) channels have been implicated in various types of malignancies including gastric cancer (GC). However, the detailed mechanisms of TRPC channels underlying cell proliferation and apoptosis of GC cells remain largely unknown. Here, we report that TRPC3 was highly expressed in clinical GC specimens and correlated with GC malignant progression and poor prognosis. Forced expression of TRPC3 in GC cells enhanced both receptor-operated Ca2+ entry (ROCE) and store-operated Ca2+ entry (SOCE) and promoted the nuclear factor of activated T cell 2 (NFATc2) nuclear translocation by AKT/GSK-3ß and CNB2 signaling. Pharmacological inhibition of TRPC3 or CRISPR/Cas9-mediated TRPC3 knockout effectively inhibited the growth of GC cells both in vitro and in vivo. These effects were reversible by the rescue of TRPC3 expression. Furthermore, we confirmed the role of TRPC3 and the ROCE-AKT/GSK3ß-CNB2/NFATc2 signaling cascade in regulating cell cycle checkpoint, apoptosis cascade, and intracellular ROS production in GC. Overall, our findings suggest an oncogenic role of TRPC3 in GC and may highlight a potential target of TRPC3 for therapeutic intervention of GC and its malignant progression.


Carcinogenesis/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , NFATC Transcription Factors/metabolism , Signal Transduction/physiology , Stomach Neoplasms/metabolism , TRPC Cation Channels/metabolism , Animals , Apoptosis/physiology , Carcinogenesis/pathology , Cell Line, Tumor , Cell Proliferation/physiology , Humans , Mice , Oncogenes/physiology , Protein Transport/physiology , Reactive Oxygen Species/metabolism , Stomach Neoplasms/pathology
15.
Cancer Lett ; 499: 175-187, 2021 02 28.
Article En | MEDLINE | ID: mdl-33249195

Chronic hepatitis B virus (HBV) infection is one of the major global health problems. Although the small protein of hepatitis B virus surface antigen (HBsAg), SHBs, is the most abundant HBV viral protein, its pathogenic role and molecular mechanism in malignant progression of HBV-related hepatocellular carcinoma (HCC) remain largely unknown. Here we reported that SHBs expression induced epithelial-mesenchymal transition (EMT) process in HCC cells and significantly increased their migratory and invasive ability as well as metastatic potential. Mechanistically, SHBs expression in HCC cells induced endoplasmic reticulum (ER) stress that activated the activating transcription factor 4 (ATF4) to increase the expression and secretion of fibroblast growth factor 19 (FGF19). The autocrine released FGF19 in turn activated JAK2/STAT3 signaling for induction of EMT process in HCC. Notably, SHBs was positively correlated with the expression of mesenchymal markers, the phosphorylation status of JAK2 and STAT3 as well as FGF19 levels in human HCC samples. HCC patients with SHBs positive had a more advanced clinical stage and worse prognosis. These results suggest an important role of SHBs in the metastasis and progression of HCC and may highlight a potential target for preventive and therapeutic intervention of HBV-related HCC and its malignant progression.


Carcinoma, Hepatocellular/immunology , Hepatitis B Surface Antigens/metabolism , Hepatitis B virus/immunology , Hepatitis B, Chronic/immunology , Liver Neoplasms/immunology , Animals , Carcinoma, Hepatocellular/blood , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/virology , Cell Proliferation , Endoplasmic Reticulum Stress/immunology , Female , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Gene Knockdown Techniques , Hep G2 Cells , Hepatitis B Surface Antigens/blood , Hepatitis B virus/metabolism , Hepatitis B, Chronic/blood , Hepatitis B, Chronic/mortality , Hepatitis B, Chronic/virology , Humans , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Kaplan-Meier Estimate , Liver/immunology , Liver/pathology , Liver/virology , Liver Neoplasms/blood , Liver Neoplasms/mortality , Liver Neoplasms/virology , Male , Mice , Middle Aged , RNA, Small Interfering/metabolism , Receptor, Fibroblast Growth Factor, Type 4/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Signal Transduction/genetics , Signal Transduction/immunology , Xenograft Model Antitumor Assays
16.
Mol Oncol ; 15(1): 228-245, 2021 01.
Article En | MEDLINE | ID: mdl-33128264

Salt-inducible kinase 2 (SIK2) is an important regulator in various intracellular signaling pathways related to apoptosis, tumorigenesis and metastasis. However, the involvement of SIK2 in gastric tumorigenesis and the functional linkage with gastric cancer (GC) progression remain to be defined. Here, we report that SIK2 was significantly downregulated in human GC tissues, and reduced SIK2 expression was associated with poor prognosis of patients. Overexpression of SIK2 suppressed the migration and invasion of GC cells, whereas knockdown of SIK2 enhanced cell migratory and invasive capability as well as metastatic potential. These changes in the malignant phenotype resulted from the ability of SIK2 to suppress epithelial-mesenchymal transition via inhibition of AKT/GSK3ß/ß-catenin signaling. The inhibitory effect of SIK2 on AKT/GSK3ß/ß-catenin signaling was mediated primarily through inactivation of AKT, due to its enhanced dephosphorylation by the upregulated protein phosphatases PHLPP2 and PP2A. The upregulation of PHLPP2 and PP2A was attributable to SIK2 phosphorylation and activation of mTORC1, which inhibited autophagic degradation of these two phosphatases. These results suggest that SIK2 acts as a tumor suppressor in GC and may serve as a novel prognostic biomarker and therapeutic target for this tumor.


Autophagy , Phosphoprotein Phosphatases/metabolism , Protein Phosphatase 2/metabolism , Protein Serine-Threonine Kinases/metabolism , Proteolysis , Signal Transduction , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Animals , Cell Line, Tumor , Cohort Studies , Down-Regulation/genetics , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Regulation, Neoplastic , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Male , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice, Inbred BALB C , Mice, Nude , Middle Aged , Models, Biological , Phenotype , Phosphoprotein Phosphatases/genetics , Prognosis , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins c-akt/metabolism , Stomach Neoplasms/genetics , Up-Regulation/genetics , beta Catenin/metabolism
17.
BMC Med ; 18(1): 250, 2020 08 06.
Article En | MEDLINE | ID: mdl-32762696

BACKGROUND: COVID-19 is an extremely severe infectious disease. However, few studies have focused on the epidemiological and clinical characteristics of pediatric COVID-19. This study conducted a retrospective review of the epidemiological and clinical features of COVID-19 in children. METHODS: A retrospective study was conducted on children with a definite diagnosis of COVID-19 in mainland China using the web crawler technique to collect anonymous COVID-19 updates published by local health authorities. RESULTS: Three hundred forty-one children aged 4 days to 14 years with a median age of 7 years were included. Sixty-six percent of pediatric patients were infected via family members with COVID-19. The median incubation period was 9 days (interquartile range, 6 to 13). Asymptomatic cases accounted for 5.9%, of which 30% had abnormal chest radiologic findings. A majority of pediatric COVID-19 cases showed mild to moderate clinical features, and only a few developed severe or critical diseases (0.6% and 0.3%, respectively). Fever (77.9%) and cough (32.4%) were the predominant presenting symptoms of pediatric COVID-19. The pediatric patients had fewer underlying diseases and complications than adults. The treatment modalities for pediatric COVID-19 patients were not as complex as those of adult COVID-19 patients. The overall prognosis of pediatric COVID-19 was benign with a decent recovery. The median time from onset to cure was 16 days (interquartile range, 13 to 21). CONCLUSIONS: Compared to adults, COVID-19 in children has distinct features of epidemiology and clinical manifestations. The findings from this study might help to guide the development of measures to prevent and treat this ongoing global pandemic. TRIAL REGISTRATION: Chinese Clinical Trial Registry ( chictr.org.cn ) identifier: ChiCTR2000030464.


Betacoronavirus , Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Adolescent , COVID-19 , Child , Child, Preschool , China/epidemiology , Cough/etiology , Female , Fever/etiology , Humans , Infant , Infant, Newborn , Male , Pandemics , Retrospective Studies , SARS-CoV-2
19.
Emerg Microbes Infect ; 8(1): 1393-1405, 2019.
Article En | MEDLINE | ID: mdl-31533543

HBx is a short-lived protein whose rapid turnover is mainly regulated by ubiquitin-dependent proteasomal degradation pathways. Our prior work identified BAF155 to be one of the HBx binding partners. Since BAF155 has been shown to stabilize other members of the SWI/SNF chromatin remodelling complex by attenuating their proteasomal degradation, we proposed that BAF155 might also contribute to stabilizing HBx protein in a proteasome-dependent manner. Here we report that BAF155 protected hepatitis B virus X protein (HBx) from ubiquitin-independent proteasomal degradation by competing with the 20S proteasome subunit PSMA7 to bind to HBx. BAF155 was found to directly interact with HBx via binding of its SANT domain to the HBx region between amino acid residues 81 and 120. Expression of either full-length BAF155 or SANT domain increased HBx protein levels whereas siRNA-mediated knockdown of endogenous BAF155 reduced HBx protein levels. Increased HBx stability and steady-state level by BAF155 were attributable to inhibition of ubiquitin-independent and PSMA7-mediated protein degradation. Consequently, overexpression of BAF155 enhanced the transcriptional transactivation function of HBx, activated protooncogene expression and inhibited hepatoma cell clonogenicity. These results suggest that BAF155 plays important roles in ubiquitin-independent degradation of HBx, which may be related to the pathogenesis and carcinogenesis of HBV-associated HCC.


Carcinoma, Hepatocellular/virology , Liver Neoplasms/virology , Proteasome Endopeptidase Complex/metabolism , Trans-Activators/metabolism , Transcription Factors/genetics , Ubiquitin/metabolism , Cell Line , Chromatin Assembly and Disassembly , Hep G2 Cells , Hepatitis B/complications , Hepatitis B virus/genetics , Humans , Proteasome Endopeptidase Complex/genetics , Trans-Activators/genetics , Viral Regulatory and Accessory Proteins , Virus Replication
20.
Toxicol Appl Pharmacol ; 381: 114729, 2019 10 15.
Article En | MEDLINE | ID: mdl-31445927

The PI3K/AKT signaling pathway is one of the most frequently activated signaling networks in human cancers and has become a valuable target in anticancer therapy. However, accumulating reports suggest that adverse effects such as severe liver injury and inflammation may accompany treatment with pan-PI3K and pan-AKT inhibitors. Our prior work has demonstrated that activation of the PI3K/AKT pathway has a protective role in Fas- or TNFα-induced hepatocytic cell death and liver injury. We postulated that PI3K or AKT inhibitors may exacerbate liver damage via the death factor-mediated hepatocyte apoptosis. In this study we found that several drugs targeting PI3K/AKT either clinically used or in clinical trials sensitized hepatocytes to agonistic anti-Fas antibody- or TNFα-induced apoptosis and significantly shortened the survival of mice in in vivo liver damage models. The PI3K or AKT inhibitors promoted Fas aggregation, inhibited the expression of cellular FLICE-inhibitory protein S and L (FLIPL/S), and enhanced procaspase-8 activation. Conversely, cotreatment with the AKT specific activator SC79 reversed these effects. Taken together, these findings suggest that PI3K or AKT inhibitors may render hepatocytes hypersensitive to Fas- or TNFα-induced apoptosis and liver injury.


Apoptosis/drug effects , Chemical and Drug Induced Liver Injury , Hepatocytes/drug effects , Phosphoinositide-3 Kinase Inhibitors/toxicity , Protein Kinase Inhibitors/toxicity , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Aminopyridines/toxicity , Animals , Antibodies/toxicity , CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Hep G2 Cells , Hepatocytes/metabolism , Humans , Imidazoles/toxicity , Liver/drug effects , Liver/pathology , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Purines/toxicity , Quinazolinones/toxicity , Tumor Necrosis Factor-alpha/toxicity
...