Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Natl Sci Rev ; 11(5): nwad249, 2024 May.
Article En | MEDLINE | ID: mdl-38577674

Superconducting phase transitions in two dimensions lie beyond the description of the Ginzburg-Landau symmetry-breaking paradigm for three-dimensional superconductors. They are Berezinskii-Kosterlitz-Thouless (BKT) transitions of paired-electron condensate driven by the unbinding of topological excitations, i.e. vortices. The recently discovered monolayers of layered high-transition-temperature ([Formula: see text]) cuprate superconductor Bi2Sr2CaCu2O8+δ (Bi2212) meant that this 2D superconductor promised to be ideal for the study of unconventional superconductivity. But inhomogeneity posed challenges for distinguishing BKT physics from charge correlations in this material. Here, we utilize the phase sensitivity of scanning superconducting quantum interference device microscopy susceptometry to image the local magnetic response of underdoped Bi2212 from the monolayer to the bulk throughout its phase transition. The monolayer segregates into domains with independent phases at elevated temperatures below [Formula: see text]. Within a single domain, we find that the susceptibility oscillates with flux between diamagnetism and paramagnetism in a Fraunhofer-like pattern up to [Formula: see text]. The finite modulation period, as well as the broadening of the peaks when approaching [Formula: see text] from below, suggests well-defined vortices that are increasingly screened by the dissociation of vortex-antivortex plasma through a BKT transition. In the multilayers, the susceptibility oscillation differs in a small temperature regime below [Formula: see text], consistent with a dimensional crossover led by interlayer coupling. Serving as strong evidence for BKT transition in the bulk, we observe a sharp jump in phase stiffness and paramagnetism at small fields just below [Formula: see text]. These results unify the superconducting phase transitions from the monolayer to the bulk underdoped Bi2212, and can be collectively referred to as the BKT transition with interlayer coupling.

2.
Heliyon ; 10(4): e26152, 2024 Feb 29.
Article En | MEDLINE | ID: mdl-38404906

To solve the problems of untimely and low accuracy of tunnel project collapse risk prediction, this study proposes a method of multi-source information fusion. The method uses the PSO-SVM model to predict the surrounding rock displacement. With the prediction index as the benchmark, the Cloud Model (CM) is used to calculate the basic probability assignment value. At the same time, the improved D-S theory is used to fuse the monitoring data, the advanced geological forecast, and the tripartite information indicators of site inspection patrol. This method is applied to the risk assessment of Jinzhupa Tunnel, and the decision-makers adjust the risk factors in time according to the prediction level. In the end, the tunnel did not collapse on a large scale.

3.
Plants (Basel) ; 13(2)2024 Jan 16.
Article En | MEDLINE | ID: mdl-38256811

(1) Background: Heterotrophs can affect plant biomass and alter species diversity-productivity relationships. However, these studies were conducted in systems with a low nitrogen (N) availability, and it is unclear how heterotroph removal affects the relationship between plant species diversity and productivity in different N habitats. (2) Methods: Three typical understory herbaceous plants were selected to assemble the plant species diversity (three plant species richness levels (1, 2, and 3) and seven plant species compositions), and the control, insecticide, fungicide, and all removal treatments were performed at each plant species diversity level in systems with or without N addition treatments. (3) Results: In systems without N addition, the insecticide treatment increased the plant aboveground biomass, total biomass, and leaf area, while the fungicide treatment reduced the plant belowground biomass, root length, and root tip number; the presence of Bidens pilosa increased the plant aboveground biomass. Similarly, the presence of Bletilla striata increased the plant belowground biomass and root diameter under each heterotroph removal treatment. In systems with N addition, all removal treatments reduced the plant belowground biomass and increased the plant leaf area; the presence of B. pilosa significantly increased the plant aboveground biomass, total biomass, and root length under each heterotroph removal treatment. The presence of B. striata significantly increased the plant belowground biomass and leaf area under insecticide and fungicide treatments. (4) Conclusions: Heterotroph removal alters the plant species diversity-biomass relationship by affecting the plant functional traits in systems with different N availabilities. The impact of biodiversity at different trophic levels on ecosystem functioning should be considered under the background of global change.

4.
Sci Bull (Beijing) ; 66(5): 425-432, 2021 Mar 15.
Article En | MEDLINE | ID: mdl-36654179

The iron-chalcogenide high temperature superconductor Fe(Se,Te) (FST) has been reported to exhibit complex magnetic ordering and nontrivial band topology which may lead to novel superconducting phenomena. However, the recent studies have so far been largely concentrated on its band and spin structures while its mesoscopic electronic and magnetic response, crucial for future device applications, has not been explored experimentally. Here, we used scanning superconducting quantum interference device microscopy for its sensitivity to both local diamagnetic susceptibility and current distribution in order to image the superfluid density and supercurrent in FST. We found that in FST with 10% interstitial Fe, whose magnetic structure was heavily disrupted, bulk superconductivity was significantly suppressed whereas edge still preserved strong superconducting diamagnetism. The edge dominantly carried supercurrent despite of a very long magnetic penetration depth. The temperature dependences of the superfluid density and supercurrent distribution were distinctively different between the edge and the bulk. Our Heisenberg modeling showed that magnetic dopants stabilize anti-ferromagnetic spin correlation along the edge, which may contribute towards its robust superconductivity. Our observations hold implication for FST as potential platforms for topological quantum computation and superconducting spintronics.

5.
J Phys Condens Matter ; 32(2): 025702, 2020 Jan 09.
Article En | MEDLINE | ID: mdl-31546238

Transition metal dichalcogenides (TMDCs) usually exhibit layered polytypic structures due to the weak interlayer coupling. 2H-NbSe2 is one of the most widely studied in the pristine TMDC family due to its high superconducting transition temperature (T c = 7.3 K) and the occurrence of a charge-density wave (CDW) order below 33 K. The coexistence of CDW with superconductivity poses an intriguing open question about the relationship between Fermi surface nesting and Cooper pairing. Past studies of this issue have mostly been focused on doping 2H-NbSe2 by 3d transition metals without significantly changing its crystal structure. Here we replaced the Se by Te in 2H-NbSe2 in order to design a new 1T polytype layered TMDC NbSeTe, which adopts a trigonal structure with space group P [Formula: see text] m1. We successfully grew large size and high-quality single crystals of 1T-NbSeTe via the vapor transport method using I 2 as the transport agent. Temperature-dependent resistivity and specific heat data revealed a bulk T c at 1.3 K, which is the first observation of superconductivity in pure 1T-NbSeTe phase. This compound enlarged the family of superconducting TMDCs and provides an opportunity to study the interplay between CDW and superconductivity in the trigonal structure.

6.
Phys Rev E ; 100(5-1): 052311, 2019 Nov.
Article En | MEDLINE | ID: mdl-31870000

In contemporary society, understanding how information, such as trends and viruses, spreads in various social networks is an important topic in many areas. However, it is difficult to mathematically measure how widespread the information is, especially for a general network structure. There have been studies on opinion spreading, but many studies are limited to specific spreading models such as the susceptible-infected-recovered model and the independent cascade model, and it is difficult to apply these studies to various situations. In this paper, we first suggest a general opinion spreading model (GOSM) that generalizes a large class of popular spreading models. In this model, each node has one of several states, and the state changes through interaction with neighboring nodes at discrete time intervals. Next, we show that many GOSMs have a stable property that is a GOSM version of a uniform equicontinuity. Then, we provide an approximation method to approximate the expected spread size for stable GOSMs. For the approximation method, we propose a concentration theorem that guarantees that a generalized mean-field theorem calculates the expected spreading size within small error bounds for finite time steps for a slightly dense network structure. Furthermore, we prove that a "single simulation" of running the Monte Carlo simulation is sufficient to approximate the expected spreading size. We conduct experiments on both synthetic and real-world networks and show that our generalized approximation method well predicts the state density of the various models, especially in graphs with a large number of nodes. Experimental results show that the generalized mean-field approximation and a single Monte Carlo simulation converge as shown in the concentration theorem.


Models, Theoretical , Public Opinion , Social Networking
...