Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Ophthalmol ; 17(7): 1344-1362, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39026906

RESUMEN

Age-related macular degeneration (AMD) is a complicated disease that causes irreversible visual impairment. Increasing evidences pointed retinal pigment epithelia (RPE) cells as the decisive cell involved in the progress of AMD, and the function of anti-oxidant capacity of PRE plays a fundamental physiological role. Nuclear factor erythroid 2 related factor 2 (Nrf2) is a significant transcription factor in the cellular anti-oxidant system as it regulates the expression of multiple anti-oxidative genes. Its functions of protecting RPE cells against oxidative stress (OS) and ensuing physiological changes, including inflammation, mitochondrial damage and autophagy dysregulation, have already been elucidated. Understanding the roles of upstream regulators of Nrf2 could provide further insight to the OS-mediated AMD pathogenesis. For the first time, this review summarized the reported upstream regulators of Nrf2 in AMD pathogenesis, including proteins and miRNAs, and their underlying molecular mechanisms, which may help to find potential targets via regulating the Nrf2 pathway in the future research and further discuss the existing Nrf2 regulators proved to be beneficial in preventing AMD.

2.
J Ethnopharmacol ; 334: 118532, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38972527

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Astragaloside IV (AS), a key active ingredient obtained from Chinese herb Astragalus mongholicus Bunge, exerts potent neuroprotective and anti-inflammatory effects for treating neurodegenerative diseases. However, mechanisms of AS on improvement of ischemic brain tissue repair remain unclear. AIM OF THE STUDY: This research aims at using magnetic resonance imaging (MRI) to noninvasively determine whether AS facilitates brain tissue repair, and investigating whether AS exerts brain remodeling through adenosine monophosphate-activated protein kinase (AMPK) metabolic signaling regulating key glycolytic enzymes and energy transporters, thereby impacting microglia polarization. MATERIALS AND METHODS: Ischemic stroke model in male Sprague-Dawley rats were induced through permanent occlusion of the middle cerebral artery (MCAO). Infarct volume, the alterations of brain microstructure and nerve fibers reorganization were examined by multi-parametric MRI. The pathological damages of myelinated axons and microglia polarization surrounding infarct tissue were detected using pathological techniques. Furthermore, M1/M2 microglia polarization associated protein, glycolytic rate-limiting enzymes, energy transporters and AMPK/mammalian target of rapamycin (mTOR)/hypoxia inducible factor-1α (HIF-1α) signal were examined both in ischemic stroke rats and BV2 microglia treated with lipopolysaccharide (LPS) + interferon-γ (IFN-γ) by western blotting. RESULTS: MRI revealed that AS obviously decreased infarct volume, relieved brain microstructure damage and improved nerve fibers reorganization in ischemic stroke rats. Histological tests supported MRI findings. Notably, AS promoted microglia M2 and reduced M1 polarization, induced the AMPK activation accompanied with decreased levels of phosphorylated mTOR and HIF-1α. Moreover, AS suppressed the expression of glycolytic rate-limiting enzymes and energy transporters in ischemic stroke rats and BV2 microglia. In contrast, these beneficial effects were greatly blocked by AMPK inhibitor compound C. CONCLUSION: Overall, these results collectively suggested that AS facilitated tissue remodeling that may be partially through modulating polarization of microglia in AMPK- dependent metabolic pathways after ischemic stroke.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Microglía , Ratas Sprague-Dawley , Saponinas , Triterpenos , Animales , Triterpenos/farmacología , Triterpenos/uso terapéutico , Masculino , Saponinas/farmacología , Saponinas/uso terapéutico , Microglía/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Ratas , Fármacos Neuroprotectores/farmacología , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Serina-Treonina Quinasas TOR/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/patología , Transducción de Señal/efectos de los fármacos , Modelos Animales de Enfermedad , Línea Celular
3.
J Ethnopharmacol ; 323: 117620, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38141792

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Buyang Huanwu Decoction (BYHWD), one of the most commonly utilized traditional Chinese medicine prescription for treatment of cerebral ischemic stroke. However, the understanding of BYHWD on neurovascular repair following cerebral ischemia is so far limited. AIM OF THE STUDY: This research investigated the influence of BYHWD on neurovascular remodeling by magnetic resonance imaging (MRI) technology and revealed the potential neurovascular repair mechanism underlying post-treatment with BYHWD after ischemic stroke. MATERIALS AND METHODS: Male Sprague-Dawley rats were utilized as an ischemic stroke model by permanent occlusion of the middle cerebral artery (MCAO). BYHWD was intragastrically administrated once daily for 30 days straight. Multimodal MRI was performed to detect brain tissue injuries, axonal microstructural damages, cerebral blood flow and intracranial vessels on the 30th day after BYHWD treatment. Proangiogenic factors, axonal/synaptic plasticity-related factors, energy transporters and adenosine monophosphate-activated protein kinase (AMPK) signal pathway were evaluated using western blot. Double immunofluorescent staining and western blot were applied to evaluate astrocytes and microglia polarization. RESULTS: Administration of BYHWD significantly alleviated infarct volume and brain tissue injuries and ameliorated microstructural damages, accompanied with improved axonal/synaptic plasticity-related factors, axonal growth guidance factors and decreased axonal growth inhibitors. Meanwhile, BYHWD remarkably improved cerebral blood flow, cerebral vascular signal and promoted the expression of proangiogenic factors. Particularly, treatment with BYHWD obviously suppressed astrocytes A1 and microglia M1 polarization accompanied with promoted astrocyte A2 and microglia M2 polarization. Furthermore, BYHWD effectively improved energy transporters. Especially, BYHWD markedly increased expression of phosphorylated AMPK, cyclic AMP-response element binding protein (CREB) and brain-derived neurotrophic factor (BDNF) accompanied by inactivation of the NF-κB. CONCLUSION: Taken together, these findings identified that the beneficial roles of BYHWD on neurovascular remodeling were related to AMPK pathways -mediated energy transporters and NFκB/CREB pathways.


Asunto(s)
Isquemia Encefálica , Medicamentos Herbarios Chinos , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Astrocitos , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Microglía , Proteínas Quinasas Activadas por AMP , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Accidente Cerebrovascular/tratamiento farmacológico
4.
Front Cell Neurosci ; 17: 1125412, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37051111

RESUMEN

2,3,5,6-Tetramethylpyrazine (TMP) as an active ingredient extracted from a traditional Chinese herbal medicine Ligusticum chuanxiong Hort. has been proved to penetrate blood-brain barrier (BBB) and show neuroprotective effects on cerebral ischemia. However, whether TMP could regulate astrocytic reactivity to facilitate neurovascular restoration in the subacute ischemic stroke needs to be urgently verified. In this research, permanent occlusion of the middle cerebral artery (MCAO) model was conducted and TMP (10, 20, 40 mg/kg) was intraperitoneally administrated to rats once daily for 2 weeks. Neurological function was evaluated by motor deficit score (MDS). Magnetic resonance imaging (MRI) was implemented to analyze tissue injury and cerebral blood flow (CBF). Magnetic resonance angiography (MRA) was applied to exhibit vascular signals. Transmission electron microscopy (TEM) was performed to detect the neurovascular unit (NVU) ultrastructure. Haematoxylin and eosin (HE) staining was utilized to evaluate cerebral histopathological lesions. The neurogenesis, angiogenesis, A1/A2 reactivity, aquaporin 4 (AQP4) and connexin 43 (Cx43) of astrocytes were observed with immunofluorescent staining. Then FGF2/PI3K/AKT signals were measured by western blot. Findings revealed TMP ameliorated neurological functional recovery, preserved NVU integrity, and enhanced endogenous neurogenesis and angiogenesis of rats with subacute ischemia. Shifting A1 to A2 reactivity, suppressing excessive AQP4 and Cx43 expression of astrocytes, and activating FGF2/PI3K/AKT pathway might be potential mechanisms of promoting neurovascular restoration with TMP after ischemic stroke.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA