RESUMEN
The genus Cohnella belongs to a group of Gram-positive endospore-forming bacteria within the Paenibacillaceae family. Although most species were described as xylanolytic bacteria, the literature still lacks some key information regarding their repertoire of xylan-degrading enzymes. The whole genome sequence of an isolated xylan-degrading bacterium Cohnella sp. strain AR92 was found to contain five genes encoding putative endo-1,4-ß-xylanases, of which four were cloned, expressed, and characterized to better understand the contribution of the individual endo-xylanases to the overall xylanolytic properties of strain AR92. Three of the enzymes, CoXyn10A, CoXyn10C, and CoXyn11A, were shown to be effective at hydrolyzing xylans-derived from agro-industrial, producing oligosaccharides with substrate conversion values of 32.5%, 24.7%, and 10.6%, respectively, using sugarcane bagasse glucuronoarabinoxylan and of 29.9%, 19.1%, and 8.0%, respectively, using wheat bran-derived arabinoxylan. The main reaction products from GH10 enzymes were xylobiose and xylotriose, whereas CoXyn11A produced mostly xylooligosaccharides (XOS) with 2 to 5 units of xylose, often substituted, resulting in potentially prebiotic arabinoxylooligosaccharides (AXOS). The endo-xylanases assay displayed operational features (temperature optima from 49.9 to 50.4 °C and pH optima from 6.01 to 6.31) fitting simultaneous xylan utilization. Homology modeling confirmed the typical folds of the GH10 and GH11 enzymes, substrate docking studies allowed the prediction of subsites (- 2 to + 1 in GH10 and - 3 to + 1 in GH11) and identification of residues involved in ligand interactions, supporting the experimental data. Overall, the Cohnella sp. AR92 endo-xylanases presented significant potential for enzymatic conversion of agro-industrial by-products into high-value products.Key points⢠Cohnella sp. AR92 genome encoded five potential endo-xylanases.⢠Cohnella sp. AR92 enzymes produced xylooligosaccharides from xylan, with high yields.⢠GH10 enzymes from Cohnella sp. AR92 are responsible for the production of X2 and X3 oligosaccharides.⢠GH11 from Cohnella sp. AR92 contributes to the overall xylan degradation by producing substituted oligosaccharides.
Asunto(s)
Bacillales , Saccharum , Endo-1,4-beta Xilanasas/genética , Hidrólisis , Oligosacáridos , XilanosRESUMEN
Byproducts from quinoa are not yet well explored sources of hemicellulose or products thereof. In this work, xylan from milled quinoa stalks was retrieved to 66% recovery by akaline extraction using 0.5 M NaOH at 80 °C, followed by ethanol precipitation. The isolated polymer eluted as a single peak in size-exclusion chromatography with a molecular weight of >700 kDa. Analysis by Fourier transform infrared spectroscopy and nuclear magnetic resonance (NMR) combined with acid hydrolysis to monomers showed that the polymer was built of a backbone of ß(1 â 4)-linked xylose residues that were substituted by 4-O-methylglucuronic acids, arabinose, and galactose in an approximate molar ratio of 114:23:5:1. NMR analysis also indicated the presence of α(1 â 5)-linked arabinose substituents in dimeric or oligomeric forms. The main xylooligosaccharides (XOs) produced after hydrolysis of the extracted glucuronoarabinoxylan polymer by thermostable glycoside hydrolases (GHs) from families 10 and 11 were xylobiose and xylotriose, followed by peaks of putative substituted XOs. Quantification of the unsubstituted XOs using standards showed that the highest yield from the soluble glucuronoarabinoxylan fraction was 1.26 g/100 g of xylan fraction, only slightly higher than the yield (1.00 g/100 g of xylan fraction) from the insoluble fraction (p < 0.05). No difference in yield was found between reactions in buffer or water (p > 0.05). This study shows that quinoa stalks represent a novel source of glucuronoarabinoxylan, with a substituent structure that allowed for limited production of XOs by GH10 or GH11 enzymes.
Asunto(s)
Chenopodium quinoa/química , Glucuronatos/biosíntesis , Oligosacáridos/biosíntesis , Xilanos/aislamiento & purificación , Xilosidasas/metabolismo , Arabinosa/química , Conformación de Carbohidratos , Etanol , Galactosa/química , Glucuronatos/química , Glicósido Hidrolasas/metabolismo , Hidrólisis , Peso Molecular , Oligosacáridos/química , Hidróxido de Sodio , Espectroscopía Infrarroja por Transformada de Fourier , Xilanos/química , Xilanos/metabolismo , Xilosa/químicaRESUMEN
The nuclear factor κB (NF-κB) is a promising target for drug discovery. NF-κB is a heterodimeric complex of RelA and p50 subunits that interact with the DNA, regulating the expression of several genes; its dysregulation can trigger diverse diseases including inflammation, immunodeficiency, and cancer. There is some experimental evidence, based on whole cells studies, that natural sesquiterpene lactones (Sls) can inhibit the interaction of NF-κB with DNA, by alkylating the RelA subunit via a Michael addition. In the present work, 28 natural and semisynthetic pseudoguianolides were screened as potential inhibitors of NF-κB in a biochemical assay that was designed using pure NF-κB heterodimer, pseudoguianolides and a ~1000 bp palindromic DNA fragment harboring two NF-κB recognition sequences. By comparing the relative amount of free DNA fragment to the NF-κB - DNA complex, in a routine agarose gel electrophoresis, the destabilizing effect of a compound on the complex is estimated. The results of the assay and the following structure-activity relationship study, allowed the identification of several relevant structural features in the pseudoguaianolide skeleton, which are necessary to enhance the dissociating capacity of NF-κB-DNA complex. The most active compounds are substituted at C-3 (α-carbonyl), in addition to having the α-methylene-γ-lactone moiety which is essential for the alkylation of RelA.