Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nat Struct Mol Biol ; 30(2): 176-187, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36604501

RESUMEN

Mitochondrial ß-barrel proteins are essential for the transport of metabolites, ions and proteins. The sorting and assembly machinery (SAM) mediates their folding and membrane insertion. We report the cryo-electron microscopy structure of the yeast SAM complex carrying an early eukaryotic ß-barrel folding intermediate. The lateral gate of Sam50 is wide open and pairs with the last ß-strand (ß-signal) of the substrate-the 19-ß-stranded Tom40 precursor-to form a hybrid barrel in the membrane plane. The Tom40 barrel grows and curves, guided by an extended bridge with Sam50. Tom40's first ß-segment (ß1) penetrates into the nascent barrel, interacting with its inner wall. The Tom40 amino-terminal segment then displaces ß1 to promote its pairing with Tom40's last ß-strand to complete barrel formation with the assistance of Sam37's dynamic α-protrusion. Our study thus reveals a multipoint guidance mechanism for mitochondrial ß-barrel folding.


Asunto(s)
Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas de Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/química , Microscopía por Crioelectrón , Mitocondrias/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Mitocondriales/metabolismo
3.
Cell Metab ; 33(12): 2464-2483.e18, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34800366

RESUMEN

Mitochondria are key organelles for cellular energetics, metabolism, signaling, and quality control and have been linked to various diseases. Different views exist on the composition of the human mitochondrial proteome. We classified >8,000 proteins in mitochondrial preparations of human cells and defined a mitochondrial high-confidence proteome of >1,100 proteins (MitoCoP). We identified interactors of translocases, respiratory chain, and ATP synthase assembly factors. The abundance of MitoCoP proteins covers six orders of magnitude and amounts to 7% of the cellular proteome with the chaperones HSP60-HSP10 being the most abundant mitochondrial proteins. MitoCoP dynamics spans three orders of magnitudes, with half-lives from hours to months, and suggests a rapid regulation of biosynthesis and assembly processes. 460 MitoCoP genes are linked to human diseases with a strong prevalence for the central nervous system and metabolism. MitoCoP will provide a high-confidence resource for placing dynamics, functions, and dysfunctions of mitochondria into the cellular context.


Asunto(s)
Mitocondrias , Proteoma , Humanos , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Proteoma/metabolismo
4.
Nature ; 590(7844): 163-169, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33408415

RESUMEN

The mitochondrial outer membrane contains so-called ß-barrel proteins, which allow communication between the cytosol and the mitochondrial interior1-3. Insertion of ß-barrel proteins into the outer membrane is mediated by the multisubunit mitochondrial sorting and assembly machinery (SAM, also known as TOB)4-6. Here we use cryo-electron microscopy to determine the structures of two different forms of the yeast SAM complex at a resolution of 2.8-3.2 Å. The dimeric complex contains two copies of the ß-barrel channel protein Sam50-Sam50a and Sam50b-with partially open lateral gates. The peripheral membrane proteins Sam35 and Sam37 cap the Sam50 channels from the cytosolic side, and are crucial for the structural and functional integrity of the dimeric complex. In the second complex, Sam50b is replaced by the ß-barrel protein Mdm10. In cooperation with Sam50a, Sam37 recruits and traps Mdm10 by penetrating the interior of its laterally closed ß-barrel from the cytosolic side. The substrate-loaded SAM complex contains one each of Sam50, Sam35 and Sam37, but neither Mdm10 nor a second Sam50, suggesting that Mdm10 and Sam50b function as placeholders for a ß-barrel substrate released from Sam50a. Our proposed mechanism for dynamic switching of ß-barrel subunits and substrate explains how entire precursor proteins can fold in association with the mitochondrial machinery for ß-barrel assembly.


Asunto(s)
Microscopía por Crioelectrón , Mitocondrias/química , Mitocondrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/ultraestructura , Mitocondrias/ultraestructura , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/ultraestructura , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestructura
5.
Nature ; 575(7782): 395-401, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31600774

RESUMEN

The translocase of the outer mitochondrial membrane (TOM) is the main entry gate for proteins1-4. Here we use cryo-electron microscopy to report the structure of the yeast TOM core complex5-9 at 3.8-Å resolution. The structure reveals the high-resolution architecture of the translocator consisting of two Tom40 ß-barrel channels and α-helical transmembrane subunits, providing insight into critical features that are conserved in all eukaryotes1-3. Each Tom40 ß-barrel is surrounded by small TOM subunits, and tethered by two Tom22 subunits and one phospholipid. The N-terminal extension of Tom40 forms a helix inside the channel; mutational analysis reveals its dual role in early and late steps in the biogenesis of intermembrane-space proteins in cooperation with Tom5. Each Tom40 channel possesses two precursor exit sites. Tom22, Tom40 and Tom7 guide presequence-containing preproteins to the exit in the middle of the dimer, whereas Tom5 and the Tom40 N extension guide preproteins lacking a presequence to the exit at the periphery of the dimer.


Asunto(s)
Microscopía por Crioelectrón , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Mitocondrias/química , Proteínas de Transporte de Membrana Mitocondrial/ultraestructura , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Modelos Moleculares , Fosfolípidos/metabolismo , Multimerización de Proteína , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura
6.
Cell ; 175(5): 1365-1379.e25, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30445040

RESUMEN

The exchange of metabolites between the mitochondrial matrix and the cytosol depends on ß-barrel channels in the outer membrane and α-helical carrier proteins in the inner membrane. The essential translocase of the inner membrane (TIM) chaperones escort these proteins through the intermembrane space, but the structural and mechanistic details remain elusive. We have used an integrated structural biology approach to reveal the functional principle of TIM chaperones. Multiple clamp-like binding sites hold the mitochondrial membrane proteins in a translocation-competent elongated form, thus mimicking characteristics of co-translational membrane insertion. The bound preprotein undergoes conformational dynamics within the chaperone binding clefts, pointing to a multitude of dynamic local binding events. Mutations in these binding sites cause cell death or growth defects associated with impairment of carrier and ß-barrel protein biogenesis. Our work reveals how a single mitochondrial "transfer-chaperone" system is able to guide α-helical and ß-barrel membrane proteins in a "nascent chain-like" conformation through a ribosome-free compartment.


Asunto(s)
Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Membranas Intracelulares/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/genética , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Unión Proteica , Dominios Proteicos , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Estructura Secundaria de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia
7.
Metabolomics ; 14(5): 59, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29628813

RESUMEN

INTRODUCTION: Subcellular compartmentalization enables eukaryotic cells to carry out different reactions at the same time, resulting in different metabolite pools in the subcellular compartments. Thus, mutations affecting the mitochondrial energy metabolism could cause different metabolic alterations in mitochondria compared to the cytoplasm. Given that the metabolite pool in the cytosol is larger than that of other subcellular compartments, metabolic profiling of total cells could miss these compartment-specific metabolic alterations. OBJECTIVES: To reveal compartment-specific metabolic differences, mitochondria and the cytoplasmic fraction of baker's yeast Saccharomyces cerevisiae were isolated and subjected to metabolic profiling. METHODS: Mitochondria were isolated through differential centrifugation and were analyzed together with the remaining cytoplasm by gas chromatography-mass spectrometry (GC-MS) based metabolic profiling. RESULTS: Seventy-two metabolites were identified, of which eight were found exclusively in mitochondria and sixteen exclusively in the cytoplasm. Based on the metabolic signature of mitochondria and of the cytoplasm, mutants of the succinate dehydrogenase (respiratory chain complex II) and of the FOF1-ATP-synthase (complex V) can be discriminated in both compartments by principal component analysis from wild-type and each other. These mitochondrial oxidative phosphorylation machinery mutants altered not only citric acid cycle related metabolites but also amino acids, fatty acids, purine and pyrimidine intermediates and others. CONCLUSION: By applying metabolomics to isolated mitochondria and the corresponding cytoplasm, compartment-specific metabolic signatures can be identified. This subcellular metabolomics analysis is a powerful tool to study the molecular mechanism of compartment-specific metabolic homeostasis in response to mutations affecting the mitochondrial metabolism.

8.
Science ; 359(6373)2018 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-29348211

RESUMEN

The biogenesis of mitochondria, chloroplasts, and Gram-negative bacteria requires the insertion of ß-barrel proteins into the outer membranes. Homologous Omp85 proteins are essential for membrane insertion of ß-barrel precursors. It is unknown if precursors are threaded through the Omp85-channel interior and exit laterally or if they are translocated into the membrane at the Omp85-lipid interface. We have mapped the interaction of a precursor in transit with the mitochondrial Omp85-channel Sam50 in the native membrane environment. The precursor is translocated into the channel interior, interacts with an internal loop, and inserts into the lateral gate by ß-signal exchange. Transport through the Omp85-channel interior followed by release through the lateral gate into the lipid phase may represent a basic mechanism for membrane insertion of ß-barrel proteins.


Asunto(s)
Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Porinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Porinas/genética , Conformación Proteica en Lámina beta , Pliegue de Proteína , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Canal Aniónico 1 Dependiente del Voltaje/genética
9.
Hum Mol Genet ; 24(19): 5404-15, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26160915

RESUMEN

Biogenesis of complex IV of the mitochondrial respiratory chain requires assembly factors for subunit maturation, co-factor attachment and stabilization of intermediate assemblies. A pathogenic mutation in COA6, leading to substitution of a conserved tryptophan for a cysteine residue, results in a loss of complex IV activity and cardiomyopathy. Here, we demonstrate that the complex IV defect correlates with a severe loss in complex IV assembly in patient heart but not fibroblasts. Complete loss of COA6 activity using gene editing in HEK293T cells resulted in a profound growth defect due to complex IV deficiency, caused by impaired biogenesis of the copper-bound mitochondrial DNA-encoded subunit COX2 and subsequent accumulation of complex IV assembly intermediates. We show that the pathogenic mutation in COA6 does not affect its import into mitochondria but impairs its maturation and stability. Furthermore, we show that COA6 has the capacity to bind copper and can associate with newly translated COX2 and the mitochondrial copper chaperone SCO1. Our data reveal that COA6 is intricately involved in the copper-dependent biogenesis of COX2.


Asunto(s)
Cardiomiopatías/genética , Proteínas Portadoras/genética , Complejo IV de Transporte de Electrones/genética , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/genética , Proteínas Portadoras/metabolismo , Cobre/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Fibroblastos/citología , Fibroblastos/enzimología , Células HEK293 , Humanos , Lactante , Masculino , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA