Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Chim Acta ; 962: 15-23, 2017 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-28231876

RESUMEN

The combination of NIR spectroscopy and chemometrics is a powerful correlation method for predicting the chemical constituents in biological matrices, such as the glucose and xylose content of straw. However, difficulties arise when it comes to predicting enzymatic glucose and xylose release potential, which is matrix dependent. Further complications are caused by xylose and glucose release potential being highly intercorrelated. This study emphasizes the importance of understanding the causal relationship between the model and the constituent of interest. It investigates the possibility of using near-infrared spectroscopy to evaluate the ethanol potential of wheat straw by analyzing more than 1000 samples from different wheat varieties and growth conditions. During the calibration model development, the prime emphasis was to investigate the correlation structure between the two major quality traits for saccharification of wheat straw: glucose and xylose release. The large sample set enabled a versatile and robust calibration model to be developed, showing that the prediction model for xylose release is based on a causal relationship with the NIR spectral data. In contrast, the prediction of glucose release was found to be highly dependent on the intercorrelation with xylose release. If this correlation is broken, the model performance breaks down. A simple method was devised for avoiding this breakdown and can be applied to any large dataset for investigating the causality or lack of causality of a prediction model.


Asunto(s)
Etanol/química , Informática , Triticum/química , Calibración , Glucosa/análisis , Análisis de Regresión , Espectroscopía Infrarroja Corta , Xilosa/análisis
2.
Enzyme Microb Technol ; 79-80: 70-7, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26320717

RESUMEN

The hydrolysis/fermentation of wheat straw and the adsorption/desorption/deactivation of cellulases were studied using Cellic(®) CTec2 (Cellic) and Celluclast mixed with Novozyme 188. The distribution of enzymes - cellobiohydrolase I (Cel7A), endoglucanase I (Cel7B) and ß-glucosidase - of the two formulations between the residual substrate and supernatant during the course of enzymatic hydrolysis and fermentation was investigated. The potential of recyclability using alkaline wash was also studied. The efficiency of hydrolysis with an enzyme load of 10 FPU/g cellulose reached >98% using Cellic(®) CTec2, while for Celluclast a conversion of 52% and 81%, was observed without and with ß-glucosidase supplementation, respectively. The decrease of Cellic(®) CTec2 activity observed along the process was related to deactivation of Cel7A rather than of Cel7B and ß-glucosidase. The adsorption/desorption profiles during hydrolysis/fermentation revealed that a large fraction of active enzymes remained adsorbed to the solid residue throughout the process. Surprisingly, this was the case of Cel7A and ß-glucosidase from Cellic, which remained adsorbed to the solid fraction along the entire process. Alkaline washing was used to recover the enzymes from the solid residue. This method allowed efficient recovery of Celluclast enzymes; however, this may be achieved only when minor amounts of cellulose remain present. Regarding the Cellic formulation, neither the presence of cellulose nor lignin restricted an efficient desorption of the enzymes at alkaline pH. This work shows that the recycling strategy must be customized for each particular formulation, since the enzymes found e.g. in Cellic and Celluclast bear quite different behaviour regarding the solid-liquid distribution, stability and cellulose and lignin affinity.


Asunto(s)
Celulasas/metabolismo , Triticum/metabolismo , Adsorción , Álcalis , Bioingeniería , Biocombustibles , Celulasa/metabolismo , Celulosa 1,4-beta-Celobiosidasa/metabolismo , Estabilidad de Enzimas , Enzimas Inmovilizadas/metabolismo , Fermentación , Hidrólisis , beta-Glucosidasa/metabolismo
3.
Biotechnol Biofuels ; 8: 85, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26110018

RESUMEN

BACKGROUND: Complexity and high cost are the main limitations for high-throughput screening methods for the estimation of the sugar release from plant materials during bioethanol production. In addition, it is important that we improve our understanding of the mechanisms by which different chemical components are affecting the degradability of plant material. In this study, Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) was combined with advanced chemometrics to develop calibration models predicting the amount of sugars released after pretreatment and enzymatic hydrolysis of wheat straw during bioethanol production, and the spectra were analysed to identify components associated with recalcitrance. RESULTS: A total of 1122 wheat straw samples from nine different locations in Denmark and one location in the United Kingdom, spanning a large variation in genetic material and environmental conditions during growth, were analysed. The FTIR-PAS spectra of non-pretreated wheat straw were correlated with the measured sugar release, determined by a high-throughput pretreatment and enzymatic hydrolysis (HTPH) assay. A partial least square regression (PLSR) calibration model predicting the glucose and xylose release was developed. The interpretation of the regression coefficients revealed a positive correlation between the released glucose and xylose with easily hydrolysable compounds, such as amorphous cellulose and hemicellulose. Additionally, a negative correlation with crystalline cellulose and lignin, which inhibits cellulose and hemicellulose hydrolysis, was observed. CONCLUSIONS: FTIR-PAS was used as a reliable method for the rapid estimation of sugar release during bioethanol production. The spectra revealed that lignin inhibited the hydrolysis of polysaccharides into monomers, while the crystallinity of cellulose retarded its hydrolysis into glucose. Amorphous cellulose and xylans were found to contribute significantly to the released amounts of glucose and xylose, respectively.

4.
Biotechnol Biofuels ; 7: 74, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24860617

RESUMEN

BACKGROUND: Biomass recalcitrance is affected by a number of chemical, physical and biological factors. In this study we looked into the differences in recalcitrance between two major anatomical fractions of wheat straw biomass, leaf and stem. A set of twenty-one wheat cultivars was fractionated and illustrated the substantial variation in leaf-to-stem ratio between cultivars. The two fractions were compared in terms of chemical composition, enzymatic convertibility, cellulose crystallinity and glucan accessibility. The use of water as a probe for assessing glucan accessibility was explored using low field nuclear magnetic resonance and infrared spectroscopy in combination with hydrogen-deuterium exchange. RESULTS: Leaves were clearly more degradable by lignocellulolytic enzymes than stems, and it was demonstrated that xylose removal was more linked to glucose yield for stems than for leaves. Comparing the locations of water in leaf and stem by low field NMR and FT-IR revealed that the glucan hydroxyl groups in leaves were more accessible to water than glucan hydroxyl groups in stems. No difference in crystallinity between leaf and stem was observed using wide angle x-ray diffraction. Hydrothermal pretreatment increased the accessibility towards water in stems but not in leaves. The results in this study indicate a correlation between the accessibility of glucan to water and to enzymes. CONCLUSIONS: Enzymatic degradability of wheat straw anatomical fractions can be indicated by the accessibility of the hydroxyl groups to water. This suggests that water may be used to assess glucan accessibility in biomass samples.

5.
Bioresour Technol ; 148: 180-8, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24045205

RESUMEN

Different versions of two commercial cellulases were tested for their recyclability of enzymatic activity at high dry matter processes (12% or 25% DM). Recyclability was assessed by measuring remaining enzyme activity in fermentation broth and the ability of enzymes to hydrolyse fresh, pretreated wheat straw. Industrial conditions were used to study the impact of hydrolysis temperature (40 or 50°C) and residence time on recyclability. Enzyme recycling at 12% DM indicated that hydrolysis at 50°C, though ideal for ethanol yield, should be kept short or carried out at lower temperature to preserve enzymatic activity. Best results for enzyme recycling at 25% DM was 59% and 41% of original enzyme load for a Celluclast:Novozyme188 mixture and a modern cellulase preparation, respectively. However, issues with stability of enzymes and their strong adsorption to residual solids still pose a challenge for applicable methods in enzyme recycling.


Asunto(s)
Biotecnología/métodos , Celulasas/metabolismo , Celulosa/metabolismo , Etanol/metabolismo , Industrias , Reciclaje , Temperatura , Metabolismo de los Hidratos de Carbono , Electroforesis en Gel de Poliacrilamida , Endo-1,4-beta Xilanasas/metabolismo , Fermentación , Hidrólisis , Factores de Tiempo , beta-Glucosidasa/metabolismo
6.
Biotechnol Biofuels ; 3: 25, 2010 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-21087497

RESUMEN

BACKGROUND: Variations in sugar yield due to genotypic qualities of feedstock are largely undescribed for pilot-scale ethanol processing. Our objectives were to compare glucose and xylose yield (conversion and total sugar yield) from straw of five winter wheat cultivars at three enzyme loadings (2.5, 5 and 10 FPU g-1 dm pretreated straw) and to compare particle size distribution of cultivars after pilot-scale hydrothermal pretreatment. RESULTS: Significant interactions between enzyme loading and cultivars show that breeding for cultivars with high sugar yields under modest enzyme loading could be warranted. At an enzyme loading of 5 FPU g-1 dm pretreated straw, a significant difference in sugar yields of 17% was found between the highest and lowest yielding cultivars. Sugar yield from separately hydrolyzed particle-size fractions of each cultivar showed that finer particles had 11% to 21% higher yields than coarse particles. The amount of coarse particles from the cultivar with lowest sugar yield was negatively correlated with sugar conversion. CONCLUSIONS: We conclude that genetic differences in sugar yield and response to enzyme loading exist for wheat straw at pilot scale, depending on differences in removal of hemicellulose, accumulation of ash and particle-size distribution introduced by the pretreatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...