Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
Neuro Oncol ; 25(1): 137-145, 2023 01 05.
Article En | MEDLINE | ID: mdl-35657335

BACKGROUND: Three- and five-year progression-free survival (PFS) for low-risk meningioma managed with surgery and observation reportedly exceeds 90%. Herewith we summarize outcomes for low-risk meningioma patients enrolled on NRG/RTOG 0539. METHODS: This phase II trial allocated patients to one of three groups per World Health Organization grade, recurrence status, and resection extent. Low-risk patients had either gross total (GTR) or subtotal resection (STR) for a newly diagnosed grade 1 meningioma and were observed after surgery. The primary endpoint was 3-year PFS. Adverse events (AEs) were scored using Common Terminology Criteria for Adverse Events (CTCAE) version 3. RESULTS: Among 60 evaluable patients, the median follow-up was 9.1 years. The 3-, 5-, and 10-year rates were 91.4% (95% CI, 84.2 to 98.6), 89.4% (95% CI, 81.3 to 97.5), 85.0% (95% CI, 75.3 to 94.7) for PFS and 98.3% (95% CI, 94.9 to 100), 98.3%, (95% CI, 94.9 to 100), 93.8% (95% CI, 87.0 to 100) for overall survival (OS), respectively. With centrally confirmed GTR, 3/5/10y PFS and OS rates were 94.3/94.3/87.6% and 97.1/97.1/90.4%. With STR, 3/5/10y PFS rates were 83.1/72.7/72.7% and 10y OS 100%. Five patients reported one grade 3, four grade 2, and five grade 1 AEs. There were no grade 4 or 5 AEs. CONCLUSIONS: These results prospectively validate high PFS and OS for low-risk meningioma managed surgically but raise questions regarding optimal management following STR, a subcohort that could potentially benefit from adjuvant therapy.


Meningeal Neoplasms , Meningioma , Humans , Meningioma/surgery , Radiotherapy, Adjuvant/methods , Progression-Free Survival , Risk , Meningeal Neoplasms/surgery , Retrospective Studies
2.
JAMA Oncol ; 9(1): 112-121, 2023 01 01.
Article En | MEDLINE | ID: mdl-36394838

Importance: Glioblastoma is the most lethal primary brain cancer. Clinical outcomes for glioblastoma remain poor, and new treatments are needed. Objective: To investigate whether adding autologous tumor lysate-loaded dendritic cell vaccine (DCVax-L) to standard of care (SOC) extends survival among patients with glioblastoma. Design, Setting, and Participants: This phase 3, prospective, externally controlled nonrandomized trial compared overall survival (OS) in patients with newly diagnosed glioblastoma (nGBM) and recurrent glioblastoma (rGBM) treated with DCVax-L plus SOC vs contemporaneous matched external control patients treated with SOC. This international, multicenter trial was conducted at 94 sites in 4 countries from August 2007 to November 2015. Data analysis was conducted from October 2020 to September 2021. Interventions: The active treatment was DCVax-L plus SOC temozolomide. The nGBM external control patients received SOC temozolomide and placebo; the rGBM external controls received approved rGBM therapies. Main Outcomes and Measures: The primary and secondary end points compared overall survival (OS) in nGBM and rGBM, respectively, with contemporaneous matched external control populations from the control groups of other formal randomized clinical trials. Results: A total of 331 patients were enrolled in the trial, with 232 randomized to the DCVax-L group and 99 to the placebo group. Median OS (mOS) for the 232 patients with nGBM receiving DCVax-L was 19.3 (95% CI, 17.5-21.3) months from randomization (22.4 months from surgery) vs 16.5 (95% CI, 16.0-17.5) months from randomization in control patients (HR = 0.80; 98% CI, 0.00-0.94; P = .002). Survival at 48 months from randomization was 15.7% vs 9.9%, and at 60 months, it was 13.0% vs 5.7%. For 64 patients with rGBM receiving DCVax-L, mOS was 13.2 (95% CI, 9.7-16.8) months from relapse vs 7.8 (95% CI, 7.2-8.2) months among control patients (HR, 0.58; 98% CI, 0.00-0.76; P < .001). Survival at 24 and 30 months after recurrence was 20.7% vs 9.6% and 11.1% vs 5.1%, respectively. Survival was improved in patients with nGBM with methylated MGMT receiving DCVax-L compared with external control patients (HR, 0.74; 98% CI, 0.55-1.00; P = .03). Conclusions and Relevance: In this study, adding DCVax-L to SOC resulted in clinically meaningful and statistically significant extension of survival for patients with both nGBM and rGBM compared with contemporaneous, matched external controls who received SOC alone. Trial Registration: ClinicalTrials.gov Identifier: NCT00045968.


Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/drug therapy , Glioblastoma/pathology , Temozolomide/therapeutic use , Prospective Studies , Brain Neoplasms/pathology , Recurrence , Dendritic Cells/pathology , Vaccination
3.
J Clin Oncol ; 41(6): 1285-1295, 2023 02 20.
Article En | MEDLINE | ID: mdl-36260832

PURPOSE: To assess whether reirradiation (re-RT) and concurrent bevacizumab (BEV) improve overall survival (OS) and/or progression-free survival (PFS), compared with BEV alone in recurrent glioblastoma (GBM). The primary objective was OS, and secondary objectives included PFS, response rate, and treatment adverse events (AEs) including delayed CNS toxicities. METHODS: NRG Oncology/RTOG1205 is a prospective, phase II, randomized trial of re-RT and BEV versus BEV alone. Stratification factors included age, resection, and Karnofsky performance status (KPS). Patients with recurrent GBM with imaging evidence of tumor progression ≥ 6 months from completion of prior chemo-RT were eligible. Patients were randomly assigned 1:1 to re-RT, 35 Gy in 10 fractions, with concurrent BEV IV 10 mg/kg once in every 2 weeks or BEV alone until progression. RESULTS: From December 2012 to April 2016, 182 patients were randomly assigned, of whom 170 were eligible. Patient characteristics were well balanced between arms. The median follow-up for censored patients was 12.8 months. There was no improvement in OS for BEV + RT, hazard ratio, 0.98; 80% CI, 0.79 to 1.23; P = .46; the median survival time was 10.1 versus 9.7 months for BEV + RT versus BEV alone. The median PFS for BEV + RT was 7.1 versus 3.8 months for BEV, hazard ratio, 0.73; 95% CI, 0.53 to 1.0; P = .05. The 6-month PFS rate improved from 29.1% (95% CI, 19.1 to 39.1) for BEV to 54.3% (95% CI, 43.5 to 65.1) for BEV + RT, P = .001. Treatment was well tolerated. There were a 5% rate of acute grade 3+ treatment-related AEs and no delayed high-grade AEs. Most patients died of recurrent GBM. CONCLUSION: To our knowledge, NRG Oncology/RTOG1205 is the first prospective, randomized multi-institutional study to evaluate the safety and efficacy of re-RT in recurrent GBM using modern RT techniques. Overall, re-RT was shown to be safe and well tolerated. BEV + RT demonstrated a clinically meaningful improvement in PFS, specifically the 6-month PFS rate but no difference in OS.


Brain Neoplasms , Glioblastoma , Re-Irradiation , Humans , Bevacizumab , Glioblastoma/drug therapy , Glioblastoma/radiotherapy , Re-Irradiation/adverse effects , Prospective Studies , Brain Neoplasms/drug therapy , Brain Neoplasms/radiotherapy , Antineoplastic Combined Chemotherapy Protocols/adverse effects
4.
World Neurosurg ; 161: e61-e74, 2022 05.
Article En | MEDLINE | ID: mdl-35032716

BACKGROUND: Glioblastoma (GB) is an aggressive tumor showing extensive intertumoral and intratumoral heterogeneity. Several possible reasons contribute to the historical inability to develop effective therapeutic strategies for treatment of GB. One such challenge is the inability to consistently procure high-quality biologically preserved specimens for use in molecular research and patient-derived xenograft model development. No scientifically derived standardized method exists for intraoperative tissue collection specifically designed with the fragility of RNA in mind. METHODS: In this investigation, we set out to characterize matched specimens from 6 GB patients comparing the traditional handling and collection processes of intraoperative tissue used in most neurosurgical operating rooms versus an automated resection, collection, and biological preservation system (APS) which captures, preserves, and biologically maintains tissue in a prescribed and controlled microenvironment. Matched specimens were processed in parallel at various time points and temperatures, evaluating viability, RNA and protein concentrations, and isolation of GB cell lines. RESULTS: We found that APS-derived GB slices stored in an APS modified medium remained viable and maintained high-quality RNA and protein concentration for up to 24 hours. CONCLUSIONS: Our results showed that primary GB cell cultures derived in this manner had improved growth over widely used collection and preservation methods. By implementing an automated intraoperative system, we also eliminated inconsistencies in methodology of tissue collection, handling and biological preservation, establishing a repeatable and standardized practice that does not require additional staff or a laboratory technician to manage it.


Brain Neoplasms , Glioblastoma , Brain Neoplasms/pathology , Brain Neoplasms/surgery , Glioblastoma/pathology , Glioblastoma/surgery , Humans , Pilot Projects , Preservation, Biological , RNA , Tissue Preservation/methods , Tumor Microenvironment
6.
J Neurol Sci ; 418: 117102, 2020 Nov 15.
Article En | MEDLINE | ID: mdl-32866816

Temozolomide (TMZ) therapy is the standard of care for patients with glioblastoma (GBM). Clinical studies have shown that elevated levels of DNA repair protein O (6)-methylguanine-DNA methyltransferase (MGMT) or deficiency/defect of DNA mismatch repair (MMR) genes is associated with TMZ resistance in some, but not all, GBM tumors. Another reason for GBM treatment failure is signal redundancy due to coactivation of several functionally linked receptor tyrosine kinases (RTKs), including anaplastic lymphoma kinase (ALK) and c-Met (hepatocyte growth factor receptor). As such, these tyrosine kinases serve as potential targets for GBM therapy. Thus, we tested two novel drugs: INC280 (Capmatinib: a highly selective c-Met receptor tyrosine kinase-RTK inhibitor) and LDK378 (Ceritinib: a highly selective anaplastic lymphoma kinase-ALK inhibitor), aiming to overcome TMZ resistance in MGMT-unmethylated GBM cells in in vitro cell culture models. Treatments were examined using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, caspase-3 assay and western blot analysis. Results obtained from our experiments demonstrated that preconditioning with INC280 and LDK378 drugs exhibit increased MMR protein expression, specifically MMR protein MLH1 (MutL Homolog 1) and MSH6 (MutS Homolog 6) and sensitized TMZ in MGMT-unmethylated GBM cells via suppression of ALK and c-Met expression. INC280 and LDK378 plus TMZ also induced apoptosis by modulating downstream signaling of PI3K/AKT/STAT3. Taken together, this data indicates that co-inhibition of ALK and c-MET can enhance growth inhibitory effects in MGMT-unmethylated cells and enhance TMZ sensitivity in-vitro, suggesting c-Met inhibitors combined with ALK-targeting provide a therapeutic benefit in MGMT-unmethylated GBM patients.


Brain Neoplasms , Glioblastoma , Pharmaceutical Preparations , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Benzamides , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Cell Line, Tumor , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Drug Resistance, Neoplasm/genetics , Glioblastoma/drug therapy , Glioblastoma/genetics , Humans , Imidazoles , Phosphatidylinositol 3-Kinases , Pyrimidines , Sulfones , Temozolomide/pharmacology , Temozolomide/therapeutic use , Triazines , Tumor Suppressor Proteins/genetics
7.
Cancer Invest ; 38(6): 349-355, 2020 Jul.
Article En | MEDLINE | ID: mdl-32441531

Background: Meningiomas represent ∼30% of primary central nervous system (CNS) tumors. Although advances in surgery and radiotherapy have significantly improved survival, there remains an important subset of patients whose tumors have more aggressive behavior and are refractory to conventional therapy. Recent advances in molecular genetics and epigenetics suggest that this aggressive behavior may be due to the deletion of the DNA repair and tumor suppressor gene, CHEK2, neurofibromatosis Type 2 (NF2) mutation on chromosome 22q12, and genetic abnormalities in multiple RTKs including FGFRs. Management of higher-grade meningiomas, such as anaplastic meningiomas (AM: WHO grade III), is truly challenging and there isn't an established chemotherapy option. We investigate the effect of active multi tyrosine receptor kinase inhibitor Dovitinib at stopping AM cell growth in in vitro with either frequent codeletion or mutated CHEK2 and NF2 gene.Methods: Treatment effects were assessed using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, western blot analysis, caspases assay, and DNA fragmentation assay.Results: Treatment of CH157MN and IOMM-Lee cells with Dovitinib suppressed multiple angiokinases-mainly FGFRs, leading to suppression of downstream signaling by RAS-RAF-MAPK molecules and PI3K-AKT molecules which are involved in cell proliferation, cell survival, and tumor invasion. Furthermore, Dovitinib induced apoptosis via downregulation of survival proteins (Bcl-XL), and over-expression of apoptotic factors (Bax and caspase-3) regardless of CHEK2 and NF2 mutation status.Conclusions: This study establishes the groundwork for the development of Dovitinib as a therapeutic agent for high-grade AM with either frequent codeletion or mutated CHEK2 and NF2, an avenue with high translational potential.


Benzimidazoles/pharmacology , Checkpoint Kinase 2/genetics , Meningioma/drug therapy , Neurofibromin 2/genetics , Quinolones/pharmacology , Apoptosis/drug effects , Caspase 3/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Meningioma/genetics , Meningioma/pathology , Mutation/genetics , Neoplasm Staging , Phosphatidylinositol 3-Kinases/genetics , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/genetics , Receptors, Fibroblast Growth Factor/antagonists & inhibitors , Receptors, Fibroblast Growth Factor/genetics , Signal Transduction/drug effects , bcl-2-Associated X Protein/genetics , bcl-X Protein/genetics
8.
Neurooncol Adv ; 2(1): vdaa155, 2020.
Article En | MEDLINE | ID: mdl-33392505

BACKGROUND: Giant cell glioblastoma (gcGBM) is a rare histologic subtype of glioblastoma characterized by numerous bizarre multinucleate giant cells and increased reticulin deposition. Compared with conventional isocitrate dehydrogenase (IDH)-wildtype glioblastomas, gcGBMs typically occur in younger patients and are generally associated with an improved prognosis. Although prior studies of gcGBMs have shown enrichment of genetic events, such as TP53 alterations, no defining aberrations have been identified. The aim of this study was to evaluate the genomic profile of gcGBMs to facilitate more accurate diagnosis and prognostication for this entity. METHODS: Through a multi-institutional collaborative effort, we characterized 10 gcGBMs by chromosome studies, single nucleotide polymorphism microarray analysis, and targeted next-generation sequencing. These tumors were subsequently compared to the genomic and epigenomic profile of glioblastomas described in The Cancer Genome Atlas (TCGA) dataset. RESULTS: Our analysis identified a specific pattern of genome-wide massive loss of heterozygosity (LOH) driven by near haploidization in a subset of glioblastomas with giant cell histology. We compared the genomic signature of these tumors against that of all glioblastomas in the TCGA dataset (n = 367) and confirmed that our cohort of gcGBMs demonstrated a significantly different genomic profile. Integrated genomic and histologic review of the TCGA cohort identified 3 additional gcGBMs with a near haploid genomic profile. CONCLUSIONS: Massive LOH driven by haploidization represents a defining molecular hallmark of a subtype of gcGBM. This unusual mechanism of tumorigenesis provides a diagnostic genomic hallmark to evaluate in future cases, may explain reported differences in survival, and suggests new therapeutic vulnerabilities.

9.
Cancer Chemother Pharmacol ; 82(6): 945-952, 2018 12.
Article En | MEDLINE | ID: mdl-30209569

PURPOSE/INTRODUCTION: Glioblastoma (GB) remains incurable despite aggressive chemotherapy, radiotherapy, and surgical interventions; immunotherapies remain experimental in clinical practice. Relevant preclinical models that can accurately predict tumor response to therapy are equally challenging. This study aimed to validate the effect of the naturally occurring agent diallyl trisulfide (DATS) in human GB in relevant pre-clinical models. METHODS: Ex vivo slice culture, in vivo cell line derived orthotopic xenograft and patient-derived orthotopic xenograft (PDX) animal models of GB were utilized to assess efficacy of treatment with DATS. RESULTS: Our results showed 72-h treatments of 25 µM DATS induced cell death in ex vivo human GB slice culture. We treated U87MG orthotopic xenograft models (U87MGOX) and patient-derived orthotopic xenograft models (PDX) with daily intraperitoneal injections of DATS for 14 days. Magnetic resonance (MR) imaging of mice treated with DATS (10 mg/kg) demonstrated reduced tumor size at 5 weeks when compared with saline-treated U87MGOX and PDX controls. Hematoxylin (H&E) staining demonstrated dose-dependent reduction in gross tumor volume with decreased proliferation and decreased angiogenesis. Western blotting showed that DATS was associated with increases in histone acetylation (Ac-Histone H3/H4) and activated caspase-3 in this novel preclinical model. Histological assessment and enzyme assays showed that even the highest dose of DATS did not negatively impact hepatic function. CONCLUSIONS: DATS may be an effective and well-tolerated therapeutic agent in preventing tumor progression and inducing apoptosis in human GB.


Allyl Compounds/therapeutic use , Glioblastoma/drug therapy , Histone Deacetylase Inhibitors/therapeutic use , Histone Deacetylases/metabolism , Sulfides/therapeutic use , Allyl Compounds/administration & dosage , Animals , Apoptosis/drug effects , Astrocytes/drug effects , Astrocytes/pathology , Cell Line, Tumor , Dose-Response Relationship, Drug , Glioblastoma/enzymology , Glioblastoma/pathology , Histone Deacetylase Inhibitors/administration & dosage , Humans , Male , Mice, SCID , Neurons/drug effects , Neurons/pathology , Sulfides/administration & dosage , Xenograft Model Antitumor Assays
10.
Invest Radiol ; 51(5): 280-9, 2016 May.
Article En | MEDLINE | ID: mdl-26953564

OBJECTIVE: The aim of this study was to assess gadolinium deposition in the skin of a patient with normal renal function, based on estimated glomerular filtration rate values greater than 59 mL/min/1.73 m(2) after exposure to large cumulative doses of gadolinium-based contrast agents (GBCAs). MATERIALS AND METHODS: The patient underwent 61 contrasted brain MRI scans over the course of 11 years. Skin biopsies from the forearm and lower extremity were analyzed with inductively coupled plasma mass spectrometry (ICP-MS), laser ablation ICP-MS, and hydrophilic interaction liquid chromatography ICP-MS. RESULTS: The ICP-MS demonstrated high levels of gadolinium deposition (14.5 ± 0.4 µg/g), similar to previously reported gadolinium levels within the skin of patients with nephrogenic systemic fibrosis. The laser ablation ICP-MS demonstrated deposition of gadolinium within the deep layers of skin. Speciation analysis using hydrophilic interaction liquid chromatography ICP-MS demonstrated the presence of intact gadolinium-chelate species, although most of the gadolinium present could not be further characterized. Light microscopy demonstrated increased CD34 immunoreactivity in the connective tissue septations of the subcutaneous adipose tissue. The patient had no history of skin disorders and did not have a history of nephrogenic systemic fibrosis but did have severe joint contractures of unknown etiology. CONCLUSIONS: Our results, in contradiction to published literature, suggest that in patients with normal renal function, exposure to GBCAs in extremely high cumulative doses can lead to significant gadolinium deposition in the skin. This finding is in line with more recent reports of gadolinium deposition in the brain of patients with normal renal function. Future studies are required to address possible clinical consequences of gadolinium deposition in the skin, brain, and potentially other organs in patients with normal renal function. We recommend, in addition to following current US Food and Drug Administration and American College of Radiology guidelines based on estimated glomerular filtration rate values, that caution be used when administering large cumulative doses of GBCAs and that total cumulative dose of each agent administered is recorded in the patient's medical record.


Contrast Media/pharmacokinetics , Gadolinium/pharmacokinetics , Skin/metabolism , Adult , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/metabolism , Brain Neoplasms/surgery , Contrast Media/administration & dosage , Gadolinium/administration & dosage , Glioblastoma/diagnostic imaging , Glioblastoma/metabolism , Glioblastoma/surgery , Humans , Kidney/metabolism , Magnetic Resonance Imaging/methods , Young Adult
11.
Tumour Biol ; 37(6): 7525-34, 2016 Jun.
Article En | MEDLINE | ID: mdl-26684801

Radiation-induced necrosis (RN) is a relatively common side effect of radiation therapy for glioblastoma. However, the molecular mechanisms involved and the ways RN mechanisms differ from regulated cell death (apoptosis) are not well understood. Here, we compare the molecular mechanism of cell death (apoptosis or necrosis) of C6 glioma cells in both in vitro and in vivo (C6 othotopically allograft) models in response to low and high doses of X-ray radiation. Lower radiation doses were used to induce apoptosis, while high-dose levels were chosen to induce radiation necrosis. Our results demonstrate that active caspase-8 in this complex I induces apoptosis in response to low-dose radiation and inhibits necrosis by cleaving RIP1 and RI. When activation of caspase-8 was reduced at high doses of X-ray radiation, the RIP1/RIP3 necrosome complex II is formed. These complexes induce necrosis through the caspase-3-independent pathway mediated by calpain, cathepsin B/D, and apoptosis-inducing factor (AIF). AIF has a dual role in apoptosis and necrosis. At high doses, AIF promotes chromatinolysis and necrosis by interacting with histone H2AX. In addition, NF-κB, STAT-3, and HIF-1 play a crucial role in radiation-induced inflammatory responses embedded in a complex inflammatory network. Analysis of inflammatory markers in matched plasma and cerebrospinal fluid (CSF) isolated from in vivo specimens demonstrated the upregulation of chemokines and cytokines during the necrosis phase. Using RIP1/RIP3 kinase specific inhibitors (Nec-1, GSK'872), we also establish that the RIP1-RIP3 complex regulates programmed necrosis after either high-dose radiation or TNF-α-induced necrosis requires RIP1 and RIP3 kinases. Overall, our data shed new light on the relationship between RIP1/RIP3-mediated programmed necrosis and AIF-mediated caspase-independent programmed necrosis in glioblastoma.


Gamma Rays/adverse effects , Glioblastoma/radiotherapy , Necrosis/metabolism , Necrosis/pathology , Protein Serine-Threonine Kinases/metabolism , Radiation Injuries/metabolism , Radiation Injuries/pathology , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Animals , Apoptosis , Biomarkers, Tumor/metabolism , Blotting, Western , Caspases , Cell Proliferation , Glioblastoma/metabolism , Glioblastoma/pathology , Immunoenzyme Techniques , Male , Necrosis/etiology , Radiation Injuries/etiology , Rats , Rats, Sprague-Dawley , Signal Transduction , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
12.
Cancer Growth Metastasis ; 8: 51-60, 2015.
Article En | MEDLINE | ID: mdl-26648752

Glioblastoma (GB) is the most common malignant brain tumor. Drug resistance frequently develops in these tumors during chemotherapy. Therefore, predicting drug response in these patients remains a major challenge in the clinic. Thus, to improve the clinical outcome, more effective and tolerable combination treatment strategies are needed. Robust experimental evidence has shown that the main reason for failure of treatments is signal redundancy due to coactivation of several functionally linked receptor tyrosine kinases (RTKs), including anaplastic lymphoma kinase (ALK), c-Met (hepatocyte growth factor receptor), and oncogenic c-ros oncogene1 (ROS1: RTK class orphan) fusion kinase FIG (fused in GB)-ROS1. As such, these could be attractive targets for GB therapy. The study subjects consisted of 19 patients who underwent neurosurgical resection of GB tissues. Our in vitro and ex vivo models promisingly demonstrated that treatments with crizotinib (PF-02341066: dual ALK/c-Met inhibitor) and temozolomide in combination induced synergistic antitumor activity on FIG-ROS1-positive GB cells. Our results also showed that ex vivo FIG-ROS1+ slices (obtained from GB patients) when cultured were able to preserve tissue architecture, cell viability, and global gene-expression profiles for up to 14 days. Both in vitro and ex vivo studies indicated that combination blockade of FIG, p-ROS1, p-ALK, and p-Met augmented apoptosis, which mechanistically involves activation of Bim and inhibition of survivin, p-Akt, and Mcl-1 expression. However, it is important to note that we did not see any significant synergistic effect of crizotinib and temozolomide on FIG-ROS1-negative GB cells. Thus, these ex vivo culture results will have a significant impact on patient selection for clinical trials and in predicting response to crizotinib and temozolomide therapy. Further studies in different animal models of FIG-ROS1-positive GB cells are warranted to determine useful therapies for the management of human GBs.

13.
Tumour Biol ; 36(9): 7027-34, 2015 Sep.
Article En | MEDLINE | ID: mdl-25864108

Recurrent meningiomas constitute an uncommon but significant problem after standard (surgery and radiation) therapy failure. Current chemotherapies (hydroxyurea, RU-486, and interferon-α) are only of marginal benefit. There is an urgent need for more effective treatments for meningioma patients who have failed surgery and radiation therapy. Limonin, Tangeritin, Zerumbone, 6-Gingerol, Ganoderic Acid A, and Ganoderic Acid DM are some of the plant derivatives that have anti-tumorgenic properties and cause cell death in meningioma cells in vitro. Due to its ease of administration, long-term tolerability, and low incidence of long-term side effects, we explored its potential as a therapeutic agent against meningiomas by examining their efficacy in vitro against meningioma cells. Treatment effects were assessed using MTT assay, Western blot analysis, caspases assay, and DNA fragmentation assay. Results indicated that treatments of IOMM-Lee and CH157MN meningioma cells with Limonin, Tangeritin, Zerumbone, 6-Gingerol, Ganoderic Acid A, and Ganoderic Acid DM induced apoptosis with enhanced phosphorylation of glycogen synthase kinase 3 ß (GSK3ß) via inhibition of the Wnt5/ß-catenin pathway. These drugs did not induce apoptosis in normal human neurons. Other events in apoptosis included downregulation of tetraspanin protein (TSPAN12), survival proteins (Bcl-XL and Mcl-1), and overexpression apoptotic factors (Bax and caspase-3). These results provide preliminary strong evidence that medicinal plants containing Limonin, Tangeritin, 6-Gingerol, Zerumbone, Ganoderic Acid A, and Ganoderic Acid DM can be applied to high-grade meningiomas as a therapeutic agent, and suggests that further in vivo studies are necessary to explore its potential as a therapeutic agent against malignant meningiomas.


Catechols/administration & dosage , Fatty Alcohols/administration & dosage , Flavones/administration & dosage , Heptanoic Acids/administration & dosage , Lanosterol/analogs & derivatives , Limonins/administration & dosage , Meningioma/drug therapy , Sesquiterpenes/administration & dosage , Triterpenes/administration & dosage , Apoptosis/drug effects , Catechols/chemistry , Cell Line, Tumor , DNA Fragmentation/drug effects , Fatty Alcohols/chemistry , Flavones/chemistry , Glycogen Synthase Kinase 3/biosynthesis , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3 beta , Heptanoic Acids/chemistry , Humans , Lanosterol/administration & dosage , Lanosterol/chemistry , Limonins/chemistry , Meningioma/genetics , Meningioma/pathology , Sesquiterpenes/chemistry , Triterpenes/chemistry , Wnt Signaling Pathway/drug effects
14.
Anticancer Res ; 35(2): 615-25, 2015 Feb.
Article En | MEDLINE | ID: mdl-25667438

Glioblastoma is the most common and deadliest of malignant primary brain tumors (Grade IV astrocytoma) in adults. Current standard treatments have been improving but patient prognosis still remains unacceptably devastating. Glioblastoma recurrence is linked to epigenetic mechanisms and cellular pathways. Thus, greater knowledge of the cellular, genetic and epigenetic origin of glioblastoma is the key for advancing glioblastoma treatment. One rapidly growing field of treatment, epigenetic modifiers; histone deacetylase inhibitors (HDACis), has now shown much promise for improving patient outcomes through regulation of the acetylation states of histone proteins (a form of epigenetic modulation) and other non-histone protein targets. HDAC inhibitors have been shown, in a pre-clinical setting, to be effective anticancer agents via multiple mechanisms, by up-regulating expression of tumor suppressor genes, inhibiting oncogenes, inhibiting tumor angiogenesis and up-regulating the immune system. There are many HDAC inhibitors that are currently in pre-clinical and clinical stages of investigation for various types of cancers. This review will explain the theory of epigenetic cancer therapy, identify HDAC inhibitors that are being investigated for glioblastoma therapy, explain the mechanisms of therapeutic effects as demonstrated by pre-clinical and clinical studies and describe the current status of development of these drugs as they pertain to glioblastoma therapy.


Epigenesis, Genetic , Glioblastoma/drug therapy , Histone Deacetylase Inhibitors/therapeutic use , Benzamides/therapeutic use , Fatty Acids/therapeutic use , Humans , Hydroxamic Acids/therapeutic use , Oligopeptides/therapeutic use
15.
J Neurol Neurosurg ; 1(1)2014 Apr 05.
Article En | MEDLINE | ID: mdl-25346943

Glioblastoma is a form of brain tumor with a very high morbidity and mortality. Despite decades of research, the best treatments currently in clinical practice only extend survival by a number of months. A promising alternative to conventional treatment for glioblastomas is immunotherapy. Although proposed over a century ago, the field of cancer immunotherapy has historically struggled to translate it into effective clinical treatments. Better understanding is needed of the various regulatory and co-stimulatory factors in the glioblastoma patient for more efficient immunotherapy treatments. The tumor microenvironment is anatomically shielded from normal immune-surveillance by the blood-brain barrier, irregular lymphatic drainage system, and it's in a potently immunosuppressive environment. Immunotherapy can potentially manipulate these forces effectively to enhance anti-tumor immune response and clinical benefit. New treatments utilizing the immune system show promise in terms of targeting and efficacy. This review article attempts to discuss current practices in glioblastoma treatment, the theory behind immunotherapy, and current research into various clinical trials.

16.
J Natl Compr Canc Netw ; 11(7): 745-9; quiz 750, 2013 Jul.
Article En | MEDLINE | ID: mdl-23847213

Many effective therapeutic options are available for patients with chronic myelogenous leukemia (CML). Imatinib, a first-generation tyrosine kinase inhibitor (TKI), is one of several options for patients who present with CML, whether in chronic phase, accelerated phase, or blast crisis. Although CML is very responsive to the selective TKIs, with response rates in chronic phase of greater than 90%, unusual presentations have been documented. Response rates for patients with CML in accelerated phase and blast crisis are notably lower to both first- and second-generation TKIs. This report presents a recent case of a young woman with newly diagnosed CML who presented with an accelerated phase isolated central nervous system (CNS) relapse after standard imatinib therapy, who initially experienced a complete hematologic response. Further treatment options, and monitoring of disease response, are discussed. Aggressive strategies, such as intrathecal chemotherapy, change in tyrosine kinase inhibitor to one with increased CNS penetration, and consideration of allogenic stem cell transplantation, are potential therapeutic modalities. Prophylaxis of the CNS in patients deemed at risk is an area requiring further study.


Central Nervous System Neoplasms/diagnosis , Central Nervous System Neoplasms/secondary , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use , Central Nervous System Neoplasms/drug therapy , Cerebrospinal Fluid/cytology , Female , Humans , Injections, Spinal , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Recurrence , Treatment Outcome , Young Adult
...