Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 46
1.
Br J Cancer ; 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38834745

BACKGROUND: Diffuse invasion remains a primary cause of treatment failure in pediatric high-grade glioma (pHGG). Identifying cellular driver(s) of pHGG invasion is needed for anti-invasion therapies. METHODS: Ten highly invasive patient-derived orthotopic xenograft (PDOX) models of pHGG were subjected to isolation of matching pairs of invasive (HGGINV) and tumor core (HGGTC) cells. RESULTS: pHGGINV cells were intrinsically more invasive than their matching pHGGTC cells. CSC profiling revealed co-positivity of CD133 and CD57 and identified CD57+CD133- cells as the most abundant CSCs in the invasive front. In addition to discovering a new order of self-renewal capacities, i.e., CD57+CD133- > CD57+CD133+ > CD57-CD133+ > CD57-CD133- cells, we showed that CSC hierarchy was impacted by their spatial locations, and the highest self-renewal capacities were found in CD57+CD133- cells in the HGGINV front (HGGINV/CD57+CD133- cells) mediated by NANOG and SHH over-expression. Direct implantation of CD57+ (CD57+/CD133- and CD57+/CD133+) cells into mouse brains reconstituted diffusely invasion, while depleting CD57+ cells (i.e., CD57-CD133+) abrogated pHGG invasion. CONCLUSION: We revealed significantly increased invasive capacities in HGGINV cells, confirmed CD57 as a novel glioma stem cell marker, identified CD57+CD133- and CD57+CD133+ cells as a new cellular driver of pHGG invasion and suggested a new dual-mode hierarchy of HGG stem cells.

3.
J Clin Oncol ; : JCO2302019, 2024 May 21.
Article En | MEDLINE | ID: mdl-38771986

PURPOSE: T cells modified with chimeric antigen receptors (CARTs) have demonstrated efficacy for hematologic malignancies; however, benefit for patients with CNS tumors has been limited. To enhance T cell activity against GD2+ CNS malignancies, we modified GD2-directed CART cells (GD2.CARTs) with a constitutively active interleukin (IL)-7 receptor (C7R-GD2.CARTs). METHODS: Patients age 1-21 years with H3K27-altered diffuse midline glioma (DMG) or other recurrent GD2-expressing CNS tumors were eligible for this phase I trial (ClinicalTrials.gov identifier: NCT04099797). All subjects received standard-of-care adjuvant radiation therapy or chemotherapy before study enrollment. The first treatment cohort received GD2.CARTs alone (1 × 107 cells/m2), and subsequent cohorts received C7R-GD2.CARTs at two dose levels (1 × 107 cells/m2; 3 × 107 cells/m2). Standard lymphodepletion with cyclophosphamide and fludarabine was included at all dose levels. RESULTS: Eleven patients (age 4-18 years) received therapy without dose-limiting toxicity. The GD2.CART cohort did not experience toxicity, but had disease progression after brief improvement of residual neurologic deficits (≤3 weeks). The C7R-GD2.CART cohort developed grade 1 tumor inflammation-associated neurotoxicity in seven of eight (88%) cases, controllable with anakinra. Cytokine release syndrome was observed in six of eight (75%, grade 1 in all but one patient) and associated with increased circulating IL-6 and IP-10 (P < .05). Patients receiving C7R-GD2.CARTs experienced temporary improvement from baseline neurologic deficits (range, 2 to >12 months), and seven of eight (88%) remained eligible for additional treatment cycles (range 2-4 cycles). Partial responses by iRANO criteria were observed in two of seven (29%) patients with DMG treated by C7R-GD2.CARTs. CONCLUSION: Intravenous GD2.CARTs with and without C7R were well tolerated. Patients treated with C7R-GD2.CARTs exhibited transient improvement of neurologic deficits and increased circulating cytokines/chemokines. Treatment with C7R-GD2.CARTs represents a novel approach warranting further investigation for children with these incurable CNS cancers.

4.
Cancers (Basel) ; 16(9)2024 Apr 28.
Article En | MEDLINE | ID: mdl-38730671

Background: Despite multimodality therapies, the prognosis of patients with malignant brain tumors remains extremely poor. One of the major obstacles that hinders development of effective therapies is the limited availability of clinically relevant and biologically accurate (CRBA) mouse models. Methods: We have developed a freehand surgical technique that allows for rapid and safe injection of fresh human brain tumor specimens directly into the matching locations (cerebrum, cerebellum, or brainstem) in the brains of SCID mice. Results: Using this technique, we successfully developed 188 PDOX models from 408 brain tumor patient samples (both high-and low-grade) with a success rate of 72.3% in high-grade glioma, 64.2% in medulloblastoma, 50% in ATRT, 33.8% in ependymoma, and 11.6% in low-grade gliomas. Detailed characterization confirmed their replication of the histopathological and genetic abnormalities of the original patient tumors. Conclusions: The protocol is easy to follow, without a sterotactic frame, in order to generate large cohorts of tumor-bearing mice to meet the needs of biological studies and preclinical drug testing.

5.
Pediatr Blood Cancer ; 71(7): e31022, 2024 Jul.
Article En | MEDLINE | ID: mdl-38644606

BACKGROUND: Recent data found a correlation between lymphopenia occurring early during craniospinal radiation therapy (RT) and risk of disease recurrence in newly diagnosed childhood medulloblastoma. However, the population included patients who received chemotherapy prior to or during RT. Here, we investigate the effect of lymphopenia during RT in patients with newly diagnosed pediatric medulloblastoma who were chemotherapy-naïve. PROCEDURE: We analyzed 79 patients with newly diagnosed medulloblastoma (ages 2-21 years) treated between 1997 and 2013 with craniospinal RT. Log-rank tests were used to determine survival differences, and Cox proportional hazards regression was used to assess associations between patient characteristics and lymphopenia with disease recurrence risk. RESULTS: Eighty-three percent of patients (62/75) had grade ≥3 lymphopenia by RT Week 3, with 95% developing grade ≥3 lymphopenia at some point during therapy. There was no difference in incidence of lymphopenia between those who received proton beam RT (93%) versus photon (97%). Twenty-four of 79 (30%) patients developed disease recurrence at an average 27.0 months after diagnosis. There was higher risk of disease recurrence in patients with grade ≥3 lymphopenia during RT Week 4 (log-rank p = .016; Cox p = .03) and Week 5 (log-rank p = .024; Cox p = .032); after adjusting for clinical risk group, only grade ≥3 lymphopenia at Week 4 remained prognostic (Cox p = .04). No correlation was found between risk of tumor recurrence and early lymphopenia (RT Weeks 0-3) or absolute lymphocyte count (ALC) below the median at any time during RT. CONCLUSIONS: Lymphopenia during RT Weeks 4 and 5 correlates with increased risk of tumor recurrence in pediatric patients with newly diagnosed medulloblastoma.


Cerebellar Neoplasms , Lymphopenia , Medulloblastoma , Neoplasm Recurrence, Local , Humans , Medulloblastoma/radiotherapy , Lymphopenia/etiology , Child , Female , Male , Adolescent , Child, Preschool , Neoplasm Recurrence, Local/pathology , Cerebellar Neoplasms/radiotherapy , Young Adult , Retrospective Studies , Craniospinal Irradiation/adverse effects , Follow-Up Studies , Adult , Prognosis , Survival Rate , Risk Factors
6.
Clin Cancer Res ; 30(8): 1544-1554, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38334950

PURPOSE: There are no effective treatment strategies for children with highest-risk posterior fossa group A ependymoma (PFA). Chromosome 1q gains (1q+) are present in approximately 25% of newly diagnosed PFA tumors, and this number doubles at recurrence. Seventy percent of children with chromosome 1q+ PFA will die because of the tumor, highlighting the urgent need to develop new therapeutic strategies for this population. EXPERIMENTAL DESIGN: In this study, we utilize 1q+ PFA in vitro and in vivo models to test the efficacy of combination radiation and chemotherapy in a preclinical setting. RESULTS: 5-fluorouracil (5FU) enhances radiotherapy in 1q+ PFA cell lines. Specifically, 5FU increases p53 activity mediated by the extra copy of UCK2 located on chromosome 1q in 1q+ PFA. Experimental downregulation of UCK2 resulted in decreased 5FU sensitivity in 1q+ PFA cells. In in vitro studies, a combination of 5FU, retinoid tretinoin (ATRA), and radiation provided the greatest reduction in cellular proliferation and greatest increase in markers of apoptosis in 1q+ PFA cell lines compared with other treatment arms. Similarly, in vivo experiments demonstrated significant enhancement of survival in mice treated with combination radiation and 5FU and ATRA. CONCLUSIONS: These results are the first to identify a chromosome 1q+ specific therapy approach in 1q+ PFA. Existing phase I studies have already established single-agent pediatric safety and dosages of 5FU and ATRA, allowing for expedited clinical application as phase II trials for children with high-risk PFA.


Ependymoma , Infratentorial Neoplasms , Child , Humans , Animals , Mice , Infratentorial Neoplasms/genetics , Infratentorial Neoplasms/pathology , Infratentorial Neoplasms/therapy , Treatment Outcome , Ependymoma/genetics , Ependymoma/therapy , Fluorouracil , Chromosomes/metabolism
7.
Neurooncol Adv ; 5(1): vdad130, 2023.
Article En | MEDLINE | ID: mdl-37964897

Background: Although CNS tumors are the most common pediatric cancer in the United States, most physicians caring for these patients are not formally certified in the subspecialty. To determine support for developing a formal certification process in pediatric neuro-oncology, the Society for Neuro-Oncology's Pediatrics Special Interest Track Training and Credentialing working group performed a cross-sectional survey-based study of physicians and patients/caregivers of children with a CNS tumor history. Methods: Surveys were built in Survey Monkey and were available for 3 months. The physician survey had 34 questions and was open to doctors currently caring for pediatric neuro-oncology patients. The patient/caregiver survey had 13 questions. Both surveys were completed anonymously. Results: The physician survey was completed by 193 participants, the majority of whom self-identified as oncologists. Only 5.6% of survey participants had ever been board-certified in neuro-oncology; the majority of participating physicians were either unaware that this certification existed or thought they were not eligible due to training in pediatrics rather than neurology or internal medicine. Almost half of the self-identified pediatric neuro-oncologists had not completed any specific clinical neuro-oncology training. Over 75% of physicians were supportive of the implementation of a formal certification process in pediatric neuro-oncology. A total of 30 participants completed the patient/caregiver survey. Although the majority of survey participants were highly satisfied with their oncologist, 70% would have been more comfortable if their oncologist had been specifically certified in pediatric neuro-oncology. Conclusions: There is support from physicians, patients, and caregivers to establish a formal certification process in pediatric neuro-oncology.

9.
Neuro Oncol ; 25(2): 386-397, 2023 02 14.
Article En | MEDLINE | ID: mdl-35652336

BACKGROUND: Recurrent atypical teratoid/rhabdoid tumor (AT/RT) is, most often, a fatal pediatric malignancy with limited curative options. METHODS: We conducted a phase II study of Aurora kinase A inhibitor alisertib in patients aged <22 years with recurrent AT/RT. Patients received alisertib once daily (80 mg/m2 as enteric-coated tablets or 60 mg/m2 as liquid formulation) on Days 1-7 of a 21-day cycle until progressive disease (PD) occurred. Alisertib plasma concentrations were measured in cycle 1 on Days 1 (single dose) and 7 (steady state) and analyzed with noncompartmental pharmacokinetics. Trial efficacy end point was ≥10 participants with stable disease (SD) or better at 12 weeks. RESULTS: SD (n = 8) and partial response (PR) (n = 1) were observed among 30 evaluable patients. Progression-free survival (PFS) was 30.0% ± 7.9% at 6 months and 13.3% ± 5.6% at 1 year. One-year overall survival (OS) was 36.7% ± 8.4%. Two patients continued treatment for >12 months. PFS did not differ by AT/RT molecular groups. Neutropenia was the most common adverse effect (n = 23/30, 77%). The 22 patients who received liquid formulation had a higher mean maximum concentration (Cmax) of 10.1 ± 3.0 µM and faster time to Cmax (Tmax = 1.2 ± 0.7 h) than those who received tablets (Cmax = 5.7 ± 2.4 µM, Tmax = 3.4 ± 1.4 h). CONCLUSIONS: Although the study did not meet predetermined efficacy end point, single-agent alisertib was well tolerated by children with recurrent AT/RT, and SD or PR was observed in approximately a third of the patients.


Antineoplastic Agents , Central Nervous System Neoplasms , Rhabdoid Tumor , Child , Humans , Antineoplastic Agents/therapeutic use , Rhabdoid Tumor/drug therapy , Azepines/therapeutic use , Pyrimidines/therapeutic use , Central Nervous System Neoplasms/drug therapy , Aurora Kinase A , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/adverse effects
10.
Neoplasia ; 35: 100861, 2023 01.
Article En | MEDLINE | ID: mdl-36516489

Medulloblastoma (MB) is the most common malignant central nervous system tumor of childhood, comprising a heterogenous group of tumors each with distinct biology, clinical behavior, and prognosis. Long-term survival remains unacceptable, and those who do survive face high late mortality risk, new chronic treatment-related medical conditions, neurocognitive impairments, and poor health-related quality of life. Up-front treatment strategies now integrate molecular subgrouping with standard clinico-radiological factors to more actually risk stratify newly-diagnosed patients. To what extent this new stratification will lead to improvements in treatment outcome will be determined in the coming years. In parallel, discovery and appreciation for medulloblastoma's inter- and intra-tumoral heterogeneity continues growing. Clinical trials treating relapsed disease now encompass precision medicine, epigenetic modification, and immune therapy approaches. The Pacific Pediatric Neuro-Oncology (PNOC) Medulloblastoma Working Group is committed to developing clinical trials based on these evolving therapeutic strategies and supports translational efforts by PNOC researchers and the multi-stakeholder medulloblastoma community at large.


Cerebellar Neoplasms , Medulloblastoma , Child , Humans , Medulloblastoma/diagnosis , Medulloblastoma/genetics , Medulloblastoma/therapy , Cerebellar Neoplasms/diagnosis , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/therapy , Quality of Life , Prognosis , Treatment Outcome
11.
Neuro Oncol ; 25(2): 224-233, 2023 02 14.
Article En | MEDLINE | ID: mdl-36124689

BACKGROUND: Craniopharyngioma is a histologically benign tumor of the suprasellar region for which survival is excellent but quality of life is often poor secondary to functional deficits from tumor and treatment. Standard therapy consists of maximal safe resection with or without radiation therapy. Few prospective trials have been performed, and response assessment has not been standardized. METHODS: The Response Assessment in Pediatric Neuro-Oncology (RAPNO) committee devised consensus guidelines to assess craniopharyngioma response prospectively. RESULTS: Magnetic resonance imaging is the recommended radiologic modality for baseline and follow-up assessments. Radiologic response is defined by 2-dimensional measurements of both solid and cystic tumor components. In certain clinical contexts, response to solid and cystic disease may be differentially considered based on their unique natural histories and responses to treatment. Importantly, the committee incorporated functional endpoints related to neuro-endocrine and visual assessments into craniopharyngioma response definitions. In most circumstances, the cystic disease should be considered progressive only if growth is associated with acute, new-onset or progressive functional impairment. CONCLUSIONS: Craniopharyngioma is a common pediatric central nervous system tumor for which standardized response parameters have not been defined. A RAPNO committee devised guidelines for craniopharyngioma assessment to uniformly define response in future prospective trials.


Craniopharyngioma , Pituitary Neoplasms , Child , Humans , Craniopharyngioma/diagnostic imaging , Craniopharyngioma/therapy , Quality of Life , Treatment Outcome , Magnetic Resonance Imaging , Pituitary Neoplasms/diagnostic imaging , Pituitary Neoplasms/pathology
13.
Nat Commun ; 13(1): 6689, 2022 11 05.
Article En | MEDLINE | ID: mdl-36335125

Recurrence is frequent in pediatric ependymoma (EPN). Our longitudinal integrated analysis of 30 patient-matched repeated relapses (3.67 ± 1.76 times) over 13 years (5.8 ± 3.8) reveals stable molecular subtypes (RELA and PFA) and convergent DNA methylation reprogramming during serial relapses accompanied by increased orthotopic patient derived xenograft (PDX) (13/27) formation in the late recurrences. A set of differentially methylated CpGs (DMCs) and DNA methylation regions (DMRs) are found to persist in primary and relapse tumors (potential driver DMCs) and are acquired exclusively in the relapses (potential booster DMCs). Integrating with RNAseq reveals differentially expressed genes regulated by potential driver DMRs (CACNA1H, SLC12A7, RARA in RELA and HSPB8, GMPR, ITGB4 in PFA) and potential booster DMRs (PLEKHG1 in RELA and NOTCH, EPHA2, SUFU, FOXJ1 in PFA tumors). DMCs predicators of relapse are also identified in the primary tumors. This study provides a high-resolution epigenetic roadmap of serial EPN relapses and 13 orthotopic PDX models to facilitate biological and preclinical studies.


Ependymoma , Symporters , Humans , Child , Ependymoma/genetics , Ependymoma/pathology , DNA Methylation/genetics , Recurrence , Epigenesis, Genetic , Symporters/genetics
15.
Lancet Oncol ; 23(8): e393-e401, 2022 08.
Article En | MEDLINE | ID: mdl-35901835

Response criteria for paediatric intracranial ependymoma vary historically and across different international cooperative groups. The Response Assessment in the Pediatric Neuro-Oncology (RAPNO) working group, consisting of an international panel of paediatric and adult neuro-oncologists, neuro-radiologists, radiation oncologists, and neurosurgeons, was established to address both the issues and the unique challenges in assessing the response in children with CNS tumours. We established a subcommittee to develop response assessment criteria for paediatric ependymoma. Current practice and literature were reviewed to identify major challenges in assessing the response of paediatric ependymoma to clinical trial therapy. For areas in which data were scarce or unavailable, consensus was reached through an iterative process. RAPNO response assessment recommendations include assessing disease response on the basis of changes in tumour volume, and using event-free survival as a study endpoint for patients entering clinical trials without bulky disease. Our recommendations for response assessment include the use of brain and spine MRI, cerebral spinal fluid cytology, neurological examination, and steroid use. Baseline postoperative imaging to assess for residual tumour should be obtained 24-48 h after surgery. Our consensus recommendations and response definitions should be prospectively validated in clinical trials.


Brain Neoplasms , Central Nervous System Neoplasms , Ependymoma , Adult , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/therapy , Central Nervous System Neoplasms/pathology , Child , Ependymoma/diagnostic imaging , Ependymoma/therapy , Humans , Magnetic Resonance Imaging
16.
J Oncol Pharm Pract ; 28(4): 904-909, 2022 Jun.
Article En | MEDLINE | ID: mdl-35179058

INTRODUCTION: Pediatric and adolescent oncology patients admitted to receive chemotherapy are at risk for drug-drug interactions (DDI). While adult literature has quoted this risk to be as high as 95% of encounters, the literature in pediatrics is limited. This is a single-center, retrospective chart review of DDI in hospitalized pediatric oncology patients. METHODS: All patients admitted to Texas Children's Hospital for chemotherapy were included. Medications ordered during the hospitalization were evaluated by Lexicomp® Drug Interactions Tool. Interactions classified as D or X or interactions rated a C including a chemotherapeutic agent were independently reviewed by three clinicians for clinical relevance. Medications associated with central nervous system (CNS) depression or QTc prolongation were counted separately. RESULTS: Of 100 admissions evaluated, 100% had a flagged interaction. There were a total of 12 X-rated interactions, 8 D-rated interactions, and 12 C-rated interactions with a chemotherapeutic agent found to be clinically relevant. Thirty-three percent of admissions had 4 or more QTc prolonging medications ordered. Twenty-four percent of admissions had 3 or more prescribed CNS depressants. In total 49% of admissions were found to have at least 1 clinically-significant DDI. CONCLUSIONS: This study exemplifies the risk of drug-drug interactions in children and young adults admitted to the hospital for chemotherapy. We demonstrated a high rate of flagged interactions with about half of admissions found to have a potentially clinically-significant DDI. Concomitant use of multiple QTc prolonging and CNS depressant medications was also prevalent, indicating a need to evaluate monitoring practices.


Antineoplastic Agents , Neoplasms , Pediatrics , Adolescent , Antineoplastic Agents/adverse effects , Child , Drug Interactions , Humans , Medical Oncology , Neoplasms/drug therapy , Retrospective Studies , Young Adult
17.
Transl Oncol ; 18: 101368, 2022 Apr.
Article En | MEDLINE | ID: mdl-35182954

Clinical outcomes in patients with WHO grade II/III astrocytoma, oligodendroglioma or secondary glioblastoma remain poor. Isocitrate dehydrogenase 1 (IDH1) is mutated in > 70% of these tumors, making it an attractive therapeutic target. To determine the efficacy of our newly developed mutant IDH1 inhibitor, SYC-435 (1-hydroxypyridin-2-one), we treated orthotopic glioma xenograft model (IC-BT142AOA) carrying R132H mutation and our newly established orthotopic patient-derived xenograft (PDX) model of recurrent anaplastic oligoastrocytoma (IC-V0914AOA) bearing R132C mutation. In addition to suppressing IDH1 mutant cell proliferation in vitro, SYC-435 (15 mg/kg, daily x 28 days) synergistically prolonged animal survival times with standard therapies (Temozolomide + fractionated radiation) mediated by reduction of H3K4/H3K9 methylation and expression of mitochondrial DNA (mtDNA)-encoded molecules. Furthermore, RNA-seq of the remnant tumors identified genes (MYO1F, CTC1 and BCL9) and pathways (base excision repair, TCA cycle II, sirtuin signaling, protein kinase A, eukaryotic initiation factor 2 and α-adrenergic signaling) as mediators of therapy resistance. Our data demonstrated the efficacy SYC-435 in targeting IDH1 mutant gliomas when combined with standard therapy and identified a novel set of genes that should be prioritized for future studies to overcome SYC-435 resistance.

18.
Neuroradiol J ; 35(5): 634-639, 2022 Oct.
Article En | MEDLINE | ID: mdl-34989626

Primary spinal cord high-grade gliomas, including those histologically identified as glioblastoma (GBM), are a rare entity in the pediatric population but should be considered in the differential diagnosis of intramedullary lesions. Pediatric spinal cord high-grade gliomas have an aggressive course with poor prognosis. The aim of this case report is to present a 15-year-old female adolescent with histopathologically confirmed spinal cord GBM with H3F3A K27 M mutation consistent with a diffuse midline glioma (DMG), H3 K27-altered, CNS WHO grade 4 with leptomeningeal seeding on initial presentation. As imaging features of H3 K27-altered DMGs are non-specific and may mimic more frequently encountered neoplastic diseases as well as demyelinating disorders, severe neurological deficits at presentation with short duration, rapid progression, and early leptomeningeal seeding should however raise the suspicion for a pediatric-type diffuse high-grade glioma like DMG, H3 K27-altered.


Brain Neoplasms , Glioblastoma , Glioma , Spinal Cord Neoplasms , Adolescent , Brain Neoplasms/pathology , Child , Female , Glioma/pathology , Histones/genetics , Humans , Mutation , Spinal Cord Neoplasms/diagnostic imaging
19.
Lab Invest ; 102(2): 185-193, 2022 02.
Article En | MEDLINE | ID: mdl-34802040

Brain tumors are the leading cause of cancer-related death in children. Tazemetostat is an FDA-approved enhancer of zeste homolog (EZH2) inhibitor. To determine its role in difficult-to-treat pediatric brain tumors, we examined EZH2 levels in a panel of 22 PDOX models and confirmed EZH2 mRNA over-expression in 9 GBM (34.6 ± 12.7-fold) and 11 medulloblastoma models (6.2 ± 1.7 in group 3, 6.0 ± 2.4 in group 4) accompanied by elevated H3K27me3 expression. Therapeutic efficacy was evaluated in 4 models (1 GBM, 2 medulloblastomas and 1 ATRT) via systematically administered tazemetostat (250 and 400 mg/kg, gavaged, twice daily) alone and in combination with cisplatin (5 mg/kg, i.p., twice) and/or radiation (2 Gy/day × 5 days). Compared with the untreated controls, tazemetostat significantly (Pcorrected < 0.05) prolonged survival times in IC-L1115ATRT (101% at 400 mg/kg) and IC-2305GBM (32% at 250 mg/kg, 45% at 400 mg/kg) in a dose-dependent manner. The addition of tazemetostat with radiation was evaluated in 3 models, with only one [IC-1078MB (group 4)] showing a substantial, though not statistically significant, prolongation in survival compared to radiation treatment alone. Combining tazemetostat (250 mg/kg) with cisplatin was not superior to cisplatin alone in any model. Analysis of in vivo drug resistance detected predominance of EZH2-negative cells in the remnant PDOX tumors accompanied by decreased H3K27me2 and H3K27me3 expressions. These data supported the use of tazemetostat in a subset of pediatric brain tumors and suggests that EZH2-negative tumor cells may have caused therapy resistance and should be prioritized for the search of new therapeutic targets.


Brain Neoplasms/therapy , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Xenograft Model Antitumor Assays/methods , Adolescent , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Benzamides/administration & dosage , Benzamides/pharmacology , Biphenyl Compounds/administration & dosage , Biphenyl Compounds/pharmacology , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Chemoradiotherapy , Child , Cisplatin/administration & dosage , Combined Modality Therapy/methods , Drug Evaluation, Preclinical , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Enzyme Inhibitors/administration & dosage , Female , Gene Expression Profiling/methods , Humans , Infant , Male , Mice, Inbred NOD , Mice, SCID , Morpholines/administration & dosage , Morpholines/pharmacology , Pyridones/administration & dosage , Pyridones/pharmacology , Radiotherapy Dosage
20.
Adv Sci (Weinh) ; 8(23): e2101923, 2021 12.
Article En | MEDLINE | ID: mdl-34719887

Diffuse invasion is the primary cause of treatment failure of glioblastoma (GBM). Previous studies on GBM invasion have long been forced to use the resected tumor mass cells. Here, a strategy to reliably isolate matching pairs of invasive (GBMINV ) and tumor core (GBMTC ) cells from the brains of 6 highly invasive patient-derived orthotopic models is described. Direct comparison of these GBMINV and GBMTC cells reveals a significantly elevated invasion capacity in GBMINV cells, detects 23/768 miRNAs over-expressed in the GBMINV cells (miRNAINV ) and 22/768 in the GBMTC cells (miRNATC ), respectively. Silencing the top 3 miRNAsINV (miR-126, miR-369-5p, miR-487b) successfully blocks invasion of GBMINV cells in vitro and in mouse brains. Integrated analysis with mRNA expression identifies miRNAINV target genes and discovers KCNA1 as the sole common computational target gene of which 3 inhibitors significantly suppress invasion in vitro. Furthermore, in vivo treatment with 4-aminopyridine (4-AP) effectively eliminates GBM invasion and significantly prolongs animal survival times (P = 0.035). The results highlight the power of spatial dissection of functionally accurate GBMINV and GBMTC cells in identifying novel drivers of GBM invasion and provide strong rationale to support the use of biologically accurate starting materials in understanding cancer invasion and metastasis.


Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Glioblastoma/genetics , Glioblastoma/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Brain Neoplasms/surgery , Cell Line, Tumor , Cell Proliferation/genetics , Disease Models, Animal , Dissection , Glioblastoma/surgery , Humans , Mice
...