Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 17879, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37857705

RESUMEN

Fungicides are the most sold pesticide group, with an 8% increase in sales in Europe within the last decade. While adverse short-term fungicide effects on non-target insect species have been reported, the long-term effects and their impact on fitness are unclear. As the effects may depend on both the fungicide and the genetic background of the species, we investigated the effects of the commonly used fungicide, fluazinam, on the Colorado potato beetle's life history traits, and whether the effects were dependent on a previously characterized insecticide resistance mutation (S291G in acetylcholinesterase-2 gene) in different populations. Our findings show that fungicide exposure can have both negative and positive, long-lasting effects on beetles, depending on the parental insecticide resistance status and population. In the Belchow population, individuals carrying resistance mutation had higher survival, but they produced offspring with lower egg-hatching rates. While, in the Vermont population, fungicide exposure increased the body mass and offspring quality in the beetles carrying resistance mutation but did not affect the beetles' survival. Our results suggest that commonly used fungicides can have both negative and positive effects on pest insects' life-history, however, their impact may differ depending on the population and parental genetic background.


Asunto(s)
Escarabajos , Fungicidas Industriales , Animales , Fungicidas Industriales/farmacología , Acetilcolinesterasa/genética , Insectos , Escarabajos/genética , Genotipo
2.
J Insect Physiol ; 146: 104503, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36935035

RESUMEN

Glyphosate-based herbicides (GBHs) are the most frequently used herbicides worldwide. The use of GBHs is intended to tackle weeds, but GBHs have been shown to affect the life-history traits and antioxidant defense system of invertebrates found in agroecosystems. Thus far, the effects of GBHs on detoxification pathways among invertebrates have not been sufficiently investigated. We performed two different experiments-1) the direct pure glyphosate and GBH treatment, and 2) the indirect GBH experiment via food-to examine the possible effects of environmentally relevant GBH levels on the survival of the Colorado potato beetle (Leptinotarsa decemlineata) and the expression profiles of their detoxification genes. As candidate genes, we selected four cytochrome P450 (CYP), three glutathione-S-transferase (GST), and two acetylcholinesterase (AChE) genes that are known to be related to metabolic or target-site resistances in insects. We showed that environmentally relevant levels of pure glyphosate and GBH increased the probability for higher mortality in the Colorado potato beetle larvae in the direct experiment, but not in the indirect experiment. The GBHs or glyphosate did not affect the expression profiles of the studied CYP, GST, or AChE genes; however, we found a large family-level variation in expression profiles in both the direct and indirect treatment experiments. These results suggest that the genes selected for this study may not be the ones expressed in response to glyphosate or GBHs. It is also possible that the relatively short exposure time did not affect gene expression profiles, or the response may have already occurred at a shorter exposure time. Our results show that glyphosate products may affect the survival of the herbivorous insect already at lower levels, depending on their sensitivity to pesticides.


Asunto(s)
Escarabajos , Herbicidas , Animales , Herbicidas/toxicidad , Acetilcolinesterasa/farmacología , Transcriptoma , Escarabajos/genética , Glifosato
3.
Insect Sci ; 29(5): 1373-1386, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35143114

RESUMEN

Fungicides are used to control pathogenic fungi of crop species, but they have also been shown to alter behavioral, life history and fitness related traits of nontarget insects. Here, we tested the fungicide effects on feeding behavior, survival and physiology of the nontarget pest insect, the Colorado potato beetle (CPB) (Leptinotarsa decemlineata). Feeding behavior was studied by a choice test of adult beetles, which were allowed to choose between a control and a fungicide (fluazinam) treated potato leaf. Larval survival was recorded after 24 and 72 h exposure to control and fungicide-treated leaves with 2 different concentrations. The adults did not show fungicide avoidance behavior. Similarly, survival of the larvae was not affected by the exposure to fungicides. Finally, to understand the effects of fungicides at the physiological level (gene expression), we tested whether the larval exposure to fungicide alter the expression of 5 metabolic pathway and stress associated genes. Highest concentration and 72-h exposure caused upregulation of 1 cytochrome P450 (CYP9Z14v2) and 1 insecticide resistance gene (Ldace1), whereas metabolic detoxification gene (Ugt1) was downregulated. At 24-h exposure, highest concentration caused downregulation of another common detoxification gene (Gs), while both exposure times to lowest concentration caused upregulation of the Hsp70 stress tolerance gene. Despite these overall effects, there was a considerable amount of variation among different families in the gene expression levels. Even though the behavioral effects of the fungicide treatments were minor, the expression level differences of the studied genes indicate changes on the metabolic detoxifications and stress-related pathways.


Asunto(s)
Escarabajos , Fungicidas Industriales , Solanum tuberosum , Aminopiridinas , Animales , Escarabajos/fisiología , Sistema Enzimático del Citocromo P-450/metabolismo , Fungicidas Industriales/metabolismo , Fungicidas Industriales/farmacología , Insectos/genética , Larva/metabolismo , Solanum tuberosum/genética , Transcriptoma
4.
Ecol Evol ; 11(22): 15995-16005, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34824806

RESUMEN

Although insect herbivores are known to evolve resistance to insecticides through multiple genetic mechanisms, resistance in individual species has been assumed to follow the same mechanism. While both mutations in the target site insensitivity and increased amplification are known to contribute to insecticide resistance, little is known about the degree to which geographic populations of the same species differ at the target site in a response to insecticides. We tested structural (e.g., mutation profiles) and regulatory (e.g., the gene expression of Ldace1 and Ldace2, AChE activity) differences between two populations (Vermont, USA and Belchow, Poland) of the Colorado potato beetle, Leptinotarsa decemlineata in their resistance to two commonly used groups of insecticides, organophosphates, and carbamates. We established that Vermont beetles were more resistant to azinphos-methyl and carbaryl insecticides than Belchow beetles, despite a similar frequency of resistance-associated alleles (i.e., S291G) in the Ldace2 gene. However, the Vermont population had two additional amino acid replacements (G192S and F402Y) in the Ldace1 gene, which were absent in the Belchow population. Moreover, the Vermont population showed higher expression of Ldace1 and was less sensitive to AChE inhibition by azinphos-methyl oxon than the Belchow population. Therefore, the two populations have evolved different genetic mechanisms to adapt to organophosphate and carbamate insecticides.

5.
Front Physiol ; 11: 576617, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33101058

RESUMEN

During winter insects face energetic stress driven by lack of food, and thermal stress due to sub-optimal and even lethal temperatures. To survive, most insects living in seasonal environments such as high latitudes, enter diapause, a deep resting stage characterized by a cessation of development, metabolic suppression and increased stress tolerance. The current study explores physiological adaptations related to diapause in three beetle species at high latitudes in Europe. From an ecological perspective, the comparison is interesting since one species (Leptinotarsa decemlineata) is an invasive pest that has recently expanded its range into northern Europe, where a retardation in range expansion is seen. By comparing its physiological toolkit to that of two closely related native beetles (Agelastica alni and Chrysolina polita) with similar overwintering ecology and collected from similar latitude, we can study if harsh winters might be constraining further expansion. Our results suggest all species suppress metabolism during diapause and build large lipid stores before diapause, which then are used sparingly. In all species diapause is associated with temporal shifts in storage and membrane lipid profiles, mostly in accordance with the homeoviscous adaptation hypothesis, stating that low temperatures necessitate acclimation responses that increase fluidity of storage lipids, allowing their enzymatic hydrolysis, and ensure integral protein functions. Overall, the two native species had similar lipidomic profiles when compared to the invasive species, but all species showed specific shifts in their lipid profiles after entering diapause. Taken together, all three species show adaptations that improve energy saving and storage and membrane lipid fluidity during overwintering diapause. While the three species differed in the specific strategies used to increase lipid viscosity, the two native beetle species showed a more canalized lipidomic response, than the recent invader. Since close relatives with similar winter ecology can have different winter ecophysiology, extrapolations among species should be done with care. Still, range expansion of the recent invader into high latitude habitats might indeed be retarded by lack of physiological tools to manage especially thermal stress during winter, but conversely species adapted to long cold winters may face these stressors as a consequence of ongoing climate warming.

6.
Chemosphere ; 258: 127254, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32559492

RESUMEN

Glyphosate is the most used herbicide worldwide, targeting physiological pathways in plants. Recent studies have shown that glyphosate can also cause toxic effects in animals. We investigated the glyphosate-based herbicide (GBH)-induced changes in potato (Solanum tuberosum) plant chemistry and the effects of a GBH on the survival rate and oxidative status of the Colorado potato beetle (Leptinotarsa decemlineata). The beetles were reared on potato plants grown in pots containing soil treated with a GBH (Roundup Gold, 450 g/l) or untreated soil (water control). The 2nd instar larvae were introduced to the potato plants and then collected in 2 phases: as 4th instar larvae and as adults. The main glycoalkaloids of the potato plants, α-solanine and α-chaconine, were measured twice during the experiment. The α-solanine was reduced in potato plants grown in GBH-treated soil, which can be detrimental to plant defenses against herbivores. GBH treatment had no effect on the survival rate or body mass of the larvae or the adult beetles. In the larvae, total glutathione (tGSH) concentration and the enzyme activity of catalase (CAT), superoxide dismutase, and glutathione-S-transferase were increased in the GBH treatment group. In the adult beetles, CAT activity and tGSH levels were affected by the interactive effect of GBH treatment and the body mass. To conclude, environmentally relevant concentrations of a GBH can affect the potato plant's glycoalkaloid concentrations, but are not likely to directly affect the survival rate of the Colorado potato beetle, but instead, modify the antioxidant defense of the beetles via diet.


Asunto(s)
Escarabajos/efectos de los fármacos , Glicina/análogos & derivados , Herbicidas/toxicidad , Estrés Oxidativo/efectos de los fármacos , Suelo/química , Solanum tuberosum/efectos de los fármacos , Animales , Antioxidantes/metabolismo , Escarabajos/metabolismo , Glutatión Transferasa/metabolismo , Glicina/toxicidad , Larva/efectos de los fármacos , Larva/metabolismo , Oxidación-Reducción , Solanina/análogos & derivados , Solanina/metabolismo , Solanum tuberosum/crecimiento & desarrollo , Solanum tuberosum/metabolismo , Glifosato
7.
Sci Rep ; 9(1): 11320, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31383885

RESUMEN

Stress tolerance and adaptation to stress are known to facilitate species invasions. Many invasive species are also pests and insecticides are used to control them, which could shape their overall tolerance to stress. It is well-known that heavy insecticide usage leads to selection of resistant genotypes but less is known about potential effects of mild sublethal insecticide usage. We studied whether stressful, sublethal pyrethroid insecticide exposure has within-generational and/or maternal transgenerational effects on fitness-related traits in the Colorado potato beetle (Leptinotarsa decemlineata) and whether maternal insecticide exposure affects insecticide tolerance of offspring. Sublethal insecticide stress exposure had positive within-and transgenerational effects. Insecticide-stressed larvae had higher adult survival and higher adult body mass than those not exposed to stress. Furthermore, offspring whose mothers were exposed to insecticide stress had higher larval and pupal survival and were heavier as adults (only females) than those descending from control mothers. Maternal insecticide stress did not explain differences in lipid content of the offspring. To conclude, stressful insecticide exposure has positive transgenerational fitness effects in the offspring. Therefore, unsuccessful insecticide control of invasive pest species may lead to undesired side effects since survival and higher body mass are known to facilitate population growth and invasion success.


Asunto(s)
Escarabajos/efectos de los fármacos , Insecticidas/toxicidad , Piretrinas/toxicidad , Animales , Escarabajos/fisiología , Femenino , Resistencia a los Insecticidas , Especies Introducidas , Larva/efectos de los fármacos , Larva/fisiología , Masculino
8.
Ecol Evol ; 9(10): 6116-6123, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31161023

RESUMEN

Invaders exert new selection pressures on the resident species, for example, through competition for resources or by using novel weapons. It has been shown that novel weapons aid invasion but it is unclear whether native species co-occurring with invaders have adapted to tolerate these novel weapons. Those resident species which are able to adapt to new selective agents can co-occur with an invader while others face a risk of local extinction. We ran a factorial common garden experiment to study whether a native plant species, Anthriscus sylvestris, has been able to evolve a greater tolerance to the allelochemicals exerted by the invader, Lupinus polyphyllus. Lupinus polyphyllus produces allelochemicals which potentially act as a novel, strong selective agent on A. sylvestris. We grew A. sylvestris seedlings collected from uninvaded (naïve) and invaded (experienced) sites growing alone and in competition with L. polyphyllus in pots filled with soil with and without activated carbon. Because activated carbon absorbs allelochemicals, its addition should improve especially naïve A. sylvestris performance in the presence of the invader. To distinguish the allelochemicals absorption and fertilizing effects of activated carbon, we grew plants also in a mixture of soil and fertilizer. A common garden experiment indicated that the performances of naïve and experienced A. sylvestris seedlings did not differ when grown with L. polyphyllus. The addition of activated carbon, which reduces interference by allelochemicals, did not induce differences in their performances although it had a positive effect on the aboveground biomass of A. sylvestris. Together, these results suggest that naïve and experienced A. sylvestris plants tolerated equally the invader L. polyphyllus and thus the tolerance has not occurred over the course of invasion.

9.
J Econ Entomol ; 112(5): 2316-2323, 2019 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-31081887

RESUMEN

Organisms live in complex multivariate environments. In agroecosystems, this complexity is often human-induced as pest individuals can be exposed to many xenobiotics simultaneously. Predicting the effects of multiple stressors can be problematic, as two or more stressors can have interactive effects. Our objective was to investigate whether indirect glyphosate-based herbicide (GBH) exposure of the host plant has interactive effects in combination with an insecticide (azinphos-methyl) on an invasive pest Colorado potato beetle (Leptinotarsa decemlineata Say). We tested the effects of GBH and insecticide on the survival, insecticide target genes expression (acetylcholinesterase genes) and oxidative status biomarkers (glutathione S-transferase [GST], glucose-6-phosphate dehydrogenase [G6PDH], glutathione reductase homolog [GR], glutathione peroxidase homolog [GPx], total glutathione [totGSH], glutathione reduced-oxidized [GSH: GSSG], catalase [CAT], superoxide dismutase [SOD], lipid hydroperoxides). We found that exposure to indirect GBH has no single or interactive effects in combination with the insecticide on larval survival. However, prior exposure to GBH inhibits Ldace1 gene expression by 0.55-fold, which is the target site for the organophosphate and carbamate insecticides. This difference disappears when individuals are exposed to both GBH and insecticide, suggesting an antagonistic effect. On the other hand, oxidative status biomarker scores (PCAs of GPx, GR, and CAT) were decreased when exposed to both stressors, indicating a synergistic effect. Overall, we found that indirect GBH exposure can have both antagonistic and synergistic effects in combination with an insecticide, which should be considered when aiming for an ecologically relevant risk assessment of multiple human-induced stressors.


Asunto(s)
Escarabajos , Herbicidas , Insecticidas , Solanum tuberosum , Animales , Colorado , Glutatión Transferasa , Organofosfatos
10.
BMC Evol Biol ; 19(1): 42, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30709335

RESUMEN

BACKGROUND: It has been suggested that climate change will lead to increased environmental fluctuations, which will undoubtedly have evolutionary consequences for all biota. For instance, fluctuations can directly increase the risk of invasions of alien species into new areas, as these species have repeatedly been proposed to benefit from disturbances. At the same time increased environmental fluctuations may also select for better invaders. However, selection by fluctuations may also influence the resistance of communities to invasions, which has rarely been tested. We tested eco-evolutionary dynamics of invasion with bacterial clones, evolved either in constant or fluctuating temperatures, and conducted experimental invasions in both conditions. RESULTS: We found clear evidence that ecological fluctuations, as well as adaptation to fluctuations by both the invader and community, all affected invasions, but played different roles at different stages of invasion. Ecological fluctuations clearly promoted invasions, especially into fluctuation mal-adapted communities. The evolutionary background of the invader played a smaller role. CONCLUSIONS: Our results indicate that climate change associated disturbances can directly increase the risk of invasions by altering ecological conditions during invasions, as well as via the evolution of both the invader and communities. Our experiment provides novel information on the complex consequences of climate change on invasions in general, and also charts risk factors associated with the spread of environmentally growing opportunistic pathogens.


Asunto(s)
Adaptación Fisiológica , Ambiente , Especies Introducidas , Serratia/fisiología
11.
Artículo en Inglés | MEDLINE | ID: mdl-30316832

RESUMEN

Glyphosate is the globally most used herbicide against a wide range of weeds. Glyphosate has been considered safe to animals as it mainly targets physiological pathways in plants. However, recent toxicological studies have revealed that glyphosate can cause various toxic effects also on animals. In this study, we investigated the direct toxic effects of a glyphosate-based herbicide (GBH, Roundup® Bio) on 1) survival and 2) oxidative status of a non-target herbivore by using Colorado potato beetles (Leptinotarsa decemlineata), originating from Poland and USA, as model species. Larvae were randomly divided into three groups: 1) high concentration (100% Roundup Bio, 360 g/l), 2) low concentration (1.5% Roundup Bio) and 3) control group (water). Larvae were exposed to Roundup for different time periods: 2 h, 24 h, 48 h, 72 h and 96 h. Larval survival decreased in the group treated with high concentration of GBH compared to controls, whereas the low concentration group did not differ from the control group. GBH treatment had no association with oxidative status biomarkers (i.e. catalase, superoxide dismutase, glutathione-S-transferase, glutathione and glutathione related enzymes), but increased lipid hydroperoxide levels after 2 h exposure, suggesting increased oxidative damage soon after the exposure. Larvae of different origin also differed in their oxidative status, indicating population-dependent differences in antioxidant defence system. Environmentally relevant concentrations of GBH are not likely to affect larval survival, but high concentrations can reduce survival and increase oxidative damage of non-target herbivores. Also, populations of different origin and pesticide usage history can differ in their tolerance to GBH.


Asunto(s)
Escarabajos/efectos de los fármacos , Escarabajos/crecimiento & desarrollo , Glicina/análogos & derivados , Herbicidas/toxicidad , Estrés Oxidativo/efectos de los fármacos , Adaptación Fisiológica , Animales , Biomarcadores/metabolismo , Escarabajos/fisiología , Resistencia a Múltiples Medicamentos , Glicina/química , Glicina/toxicidad , Herbivoria , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Larva/fisiología , Peroxidación de Lípido/efectos de los fármacos , Organofosfatos/toxicidad , Concentración Osmolar , Residuos de Plaguicidas/toxicidad , Polonia , Distribución Aleatoria , Análisis de Supervivencia , Vermont , Glifosato
12.
Curr Opin Insect Sci ; 26: 34-40, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29764658

RESUMEN

Although pesticides are a major selective force in driving the evolution of insect pests, the evolutionary processes that give rise to insecticide resistance remain poorly understood. Insecticide resistance has been widely observed to increase with frequent and intense insecticide exposure, but can be lost following the relaxation of insecticide use. One possible but rarely explored explanation is that insecticide resistance may be associated with epigenetic modifications, which influence the patterning of gene expression without changing underlying DNA sequence. Epigenetic modifications such as DNA methylation, histone modifications, and small RNAs have been observed to be heritable in arthropods, but their role in the context of rapid evolution of insecticide resistance remain poorly understood. Here, we discuss evidence supporting how: firstly, insecticide-induced effects can be transgenerationally inherited; secondly, epigenetic modifications are heritable; and thirdly, epigenetic modifications are responsive to pesticide and xenobiotic stress. Therefore, pesticides may drive the evolution of resistance via epigenetic processes. Moreover, insect pests primed by pesticides may be more tolerant of other stress, further enhancing their success in adapting to agroecosystems. Resolving the role of epigenetic modifications in the rapid evolution of insect pests has the potential to lead to new approaches for integrated pest management as well as improve our understanding of how anthropogenic stress may drive the evolution of insect pests.


Asunto(s)
Evolución Biológica , Epigénesis Genética , Insectos/genética , Resistencia a los Insecticidas/fisiología , Animales , Producción de Cultivos , Insecticidas
13.
Ecol Evol ; 8(5): 2901-2910, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29531704

RESUMEN

Rapid environmental fluctuations are ubiquitous in the wild, yet majority of experimental studies mostly consider effects of slow fluctuations on organism. To test the evolutionary consequences of fast fluctuations, we conducted nine independent experimental evolution experiments with bacteria. Experimental conditions were same for all species, and we allowed them to evolve either in fluctuating temperature alternating rapidly between 20°C and 40°C or at constant 30°C temperature. After experimental evolution, we tested the performance of the clones in both rapid fluctuation and in constant environments (20°C, 30°C and 40°C). Results from experiments on these nine species were combined meta-analytically. We found that overall the clones evolved in the fluctuating environment had evolved better efficiency in tolerating fluctuations (i.e., they had higher yield in fluctuating conditions) than the clones evolved in the constant environment. However, we did not find any evidence that fluctuation-adapted clones would have evolved better tolerance to any measured constant environments (20°C, 30°C, and 40°C). Our results back up recent empirical findings reporting that it is hard to predict adaptations to fast fluctuations using tolerance curves.

14.
Front Zool ; 12: 20, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26366187

RESUMEN

INTRODUCTION: It has been suggested that rapid range expansion could proceed through evolution in the endocrinological machinery controlling life-history switches. Based on this we tested whether the Colorado potato beetle, Leptinotarsa decemlineata, which has rapidly expanded its range across latitudinal regions in Europe, and shows photoperiodic adaptation in overwintering initiation, has different sensitivities to juvenile hormone (JH) manipulation along a latitudinal gradient. RESULTS: A factorial experiment where beetles were reared either under a long or short day photoperiod was performed. Hormone levels were manipulated by topical applications. An allatostatin mimic, H17, was used to decrease and a juvenile hormone III analogue, pyriproxyfen, was used to increase the hormone levels. The effects of photoperiod and hormone manipulations on fecundity and overwintering related burrowing were monitored. Application of H17 decreased fecundity but did not induce overwintering related burrowing. Manipulation with pyriproxyfen increased fecundity and delayed burrowing. While small population-dependent differences in responsiveness to the topical application treatments were observed in fecundity, none were seen in overwintering related burrowing. CONCLUSIONS: The results indicate that the rapid photoperiodic adaptation manifested in several life-history and physiological traits in L. decemlineata in Europe is unlikely a result of population dependent differences in JH III sensitivity. While other endocrine factors cannot be ruled out, more likely mechanisms could be genetic changes in upstream elements, such as the photoperiodic clock or the insulin signaling pathway.

15.
Physiol Biochem Zool ; 88(3): 254-65, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25860825

RESUMEN

Survival at high latitude requires the capability to cope with seasonally imposed stress, such as low winter temperatures or large temperature fluctuations. The Colorado potato beetle, Leptinotarsa decemlineata, is an invasive pest of potato that has rapidly spread from low latitudes to higher latitudes. During the last 30 years, a decrease in range expansion speed is apparent in Europe. We use a comparative approach to assess whether this could be due to an inability of L. decemlineata to cope with the harsher winters encountered at high latitude, when compared to two native northern chrysomelid beetles with similar overwintering ecology. We investigated several cold-tolerance-related physiological traits at different time points during winter. Cold tolerance followed a latitudinal pattern; the northern species were more tolerant to short-term subzero temperatures than the invasive L. decemlineata. The other northern species, the knotgrass leaf beetle, Chrysolina polita, was found to tolerate internal freezing. Interestingly, the pattern for overwinter survival at 5°C was the opposite and higher in L. decemlineata than the northern species and could be related to behavioral differences between species in overwintering location selection and a potential physiological trade-off between tolerance to cold shock and to chronic cold exposure. Furthermore, while the northern species accumulated large amounts of different sugars and polyols with probable cryoprotectant functions, none were detected in L. decemlineata at high concentrations. This lack of cryoprotectant accumulation could explain the difference in cold tolerance between the species and also suggests that a lack of physiological capacity to tolerate low temperatures could slow further latitudinal range expansion of L. decemlineata.


Asunto(s)
Distribución Animal , Frío , Escarabajos/fisiología , Aclimatación , Animales , Conducta Animal , Ecosistema , Europa (Continente) , Especies Introducidas , Estaciones del Año , Especificidad de la Especie
16.
BMC Evol Biol ; 14: 165, 2014 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-25266268

RESUMEN

BACKGROUND: To predict further invasions of pests it is important to understand what factors contribute to the genetic structure of their populations. Cosmopolitan pest species are ideal for studying how different agroecosystems affect population genetic structure within a species at different climatic extremes. We undertook the first population genetic study of the greenhouse whitefly (Trialeurodes vaporariorum), a cosmopolitan invasive herbivore, and examined the genetic structure of this species in Northern and Southern Europe. In Finland, cold temperatures limit whiteflies to greenhouses and prevent them from overwintering in nature, and in Greece, milder temperatures allow whiteflies to inhabit both fields and greenhouses year round, providing a greater potential for connectivity among populations. Using nine microsatellite markers, we genotyped 1274 T. vaporariorum females collected from 18 greenhouses in Finland and eight greenhouses as well as eight fields in Greece. RESULTS: Populations from Finland were less diverse than those from Greece, suggesting that Greek populations are larger and subjected to fewer bottlenecks. Moreover, there was significant population genetic structure in both countries that was explained by different factors. Habitat (field vs. greenhouse) together with longitude explained genetic structure in Greece, whereas in Finland, genetic structure was explained by host plant species. Furthermore, there was no temporal genetic structure among populations in Finland, suggesting that year-round populations are able to persist in greenhouses. CONCLUSIONS: Taken together our results show that greenhouse agroecosystems can limit gene flow among populations in both climate zones. Fragmented populations in greenhouses could allow for efficient pest management. However, pest persistence in both climate zones, coupled with increasing opportunities for naturalization in temperate latitudes due to climate change, highlight challenges for the management of cosmopolitan pests in Northern and Southern Europe.


Asunto(s)
Hemípteros/genética , Animales , Cambio Climático , Ecosistema , Femenino , Finlandia , Flujo Génico , Genética de Población , Grecia , Hemípteros/clasificación , Repeticiones de Microsatélite
17.
Nat Commun ; 5: 5016, 2014 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-25247589

RESUMEN

Insect communities consist of aposematic species with efficient warning colours against predation, as well as abundant examples of crypsis. To understand such coexistence, we here report results from a field experiment where relative survival of artificial larvae, varying in conspicuousness, was estimated in natural bird communities over an entire season. This takes advantage of natural variation in the proportion of naive predators: naivety peaks when young birds have just fledged. We show that the relative benefit of warning signals and crypsis changes accordingly. When naive birds are rare (early and late in the season), conspicuous warning signals improve survival, but conspicuousness becomes a disadvantage near the fledging time of birds. Such temporal structuring of predator-prey relationships facilitates the coexistence of diverse antipredatory strategies and helps explain two patterns we found in a 688-species community of Lepidoterans: larval warning signals remain rare and occur disproportionately often in seasons when predators are educated.


Asunto(s)
Adaptación Biológica/fisiología , Aves/fisiología , Cadena Alimentaria , Pigmentación/fisiología , Estaciones del Año , Selección Genética , Animales , Finlandia , Larva/fisiología , Lepidópteros/fisiología , Compuestos Orgánicos , Especificidad de la Especie , Estadísticas no Paramétricas
18.
Oecologia ; 176(1): 57-68, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25012598

RESUMEN

Photoperiodic phenological adaptations are prevalent in many organisms living in seasonal environments. As both photoperiod and growth season length change with latitude, species undergoing latitudinal range expansion often need to synchronize their life cycle with a changing photoperiod and growth season length. Since adaptive synchronization often involves a large number of time-consuming genetic changes, behavioural plasticity might be a faster way to adjust to novel conditions. We compared behavioural and physiological traits in overwintering (diapause) preparation in three latitudinally different European Colorado potato beetle (Leptinotarsa decemlineata) populations reared under two photoperiods. Our aim was to study whether behavioural plasticity could play a role in rapid range expansion into seasonal environments. Our results show that while burrowing into the soil occurred in the southernmost studied population also under a non-diapause-inducing long photoperiod, the storage lipid content of these beetles was very low compared to the northern populations. However, similar behavioural plasticity was not found in the northern populations. Furthermore, the strongest suppression of energy metabolism was seen in pre-diapause beetles from the northernmost population. These results could indicate accelerated diapause preparation and possibly energetic adjustments due to temporal constraints imposed by a shorter, northern, growth season. Our results indicate that behavioural plasticity in burrowing may have facilitated initial range expansion of L. decemlineata in Europe. However, long-term persistence at high latitudes has required synchronization of burrowing behaviour with physiological traits. The results underline that eco-physiological life-history traits of insects, such as diapause, should be included in studies on range expansion.


Asunto(s)
Aclimatación/fisiología , Distribución Animal , Conducta Animal/fisiología , Escarabajos/fisiología , Especies Introducidas , Fotoperiodo , Estaciones del Año , Animales , Diapausa de Insecto/fisiología , Ambiente , Europa (Continente) , Modelos Lineales
19.
Pest Manag Sci ; 70(10): 1524-30, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24757031

RESUMEN

BACKGROUND: Insecticide resistance in Trialeurodes vaporariorum W. is unknown in the species' northern distribution range where it inhabits mainly commercial greenhouses. Resistance development in whiteflies feeding on year-round crops in greenhouses is possible owing to the use of chemical treatments to back up biocontrol. The authors tested the response levels to spiromesifen, pymetrozine and imidacloprid in whiteflies collected from seven greenhouses within a 35 km radius in western Finland. RESULTS: All except one (PR) population had LC50 values below the recommended concentrations for the tested compounds. However, some populations showed reduced susceptibility to pymetrozine in comparison with the reference susceptible population. Resistance ratios to pymetrozine were highly variable (resistance ratio 0.5-39.7), even among closely located greenhouses, and higher than those for imidacloprid (resistance ratio 1.05-10.5) and spiromesifen (resistance ratio 0.8-11.5). LC50 values and application frequencies of pymetrozine correlated positively among the sampled populations. CONCLUSION: High variation in resistance levels to pymetrozine among populations within natural whitefly dispersal limits reflects variation in the usage of this compound among individual greenhouse crop producers. Thus, resistance management is recommended at the individual greenhouse crop producer level, even in a dense production cluster. © 2014 Society of Chemical Industry.


Asunto(s)
Hemípteros/efectos de los fármacos , Imidazoles/farmacología , Resistencia a los Insecticidas , Insecticidas/farmacología , Nitrocompuestos/farmacología , Compuestos de Espiro/farmacología , Triazinas/farmacología , Animales , Finlandia , Neonicotinoides , Control de Plagas/métodos
20.
PLoS One ; 9(1): e86012, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24465841

RESUMEN

BACKGROUND: The Colorado potato beetle (Leptinotarsa decemlineata) is a major pest and a serious threat to potato cultivation throughout the northern hemisphere. Despite its high importance for invasion biology, phenology and pest management, little is known about L. decemlineata from a genomic perspective. We subjected European L. decemlineata adult and larval transcriptome samples to 454-FLX massively-parallel DNA sequencing to characterize a basal set of genes from this species. We created a combined assembly of the adult and larval datasets including the publicly available midgut larval Roche 454 reads and provided basic annotation. We were particularly interested in diapause-specific genes and genes involved in pesticide and Bacillus thuringiensis (Bt) resistance. RESULTS: Using 454-FLX pyrosequencing, we obtained a total of 898,048 reads which, together with the publicly available 804,056 midgut larval reads, were assembled into 121,912 contigs. We established a repository of genes of interest, with 101 out of the 108 diapause-specific genes described in Drosophila montana; and 621 contigs involved in insecticide resistance, including 221 CYP450, 45 GSTs, 13 catalases, 15 superoxide dismutases, 22 glutathione peroxidases, 194 esterases, 3 ADAM metalloproteases, 10 cadherins and 98 calmodulins. We found 460 putative miRNAs and we predicted a significant number of single nucleotide polymorphisms (29,205) and microsatellite loci (17,284). CONCLUSIONS: This report of the assembly and annotation of the transcriptome of L. decemlineata offers new insights into diapause-associated and insecticide-resistance-associated genes in this species and provides a foundation for comparative studies with other species of insects. The data will also open new avenues for researchers using L. decemlineata as a model species, and for pest management research. Our results provide the basis for performing future gene expression and functional analysis in L. decemlineata and improve our understanding of the biology of this invasive species at the molecular level.


Asunto(s)
Escarabajos/genética , Transcriptoma , Actinas/genética , Actinas/metabolismo , Animales , Teorema de Bayes , Escarabajos/metabolismo , Diapausa de Insecto/genética , Resistencia a Medicamentos , Ontología de Genes , Genes de Insecto , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Especies Introducidas , Larva/genética , Larva/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Anotación de Secuencia Molecular , Filogenia , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Serpinas/genética , Serpinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA