Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Langmuir ; 39(49): 18124-18131, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38011263

RESUMEN

Although the longevity of superhydrophobic surface (SHS) induced by diffusive gas transfer has been extensively studied, the scaling relation between SHS longevity and undersaturation level of the liquid is still an open question. In this study, we address this question by performing experiments where the plastron decay is visualized by a nonintrusive optical technique based on light reflection, the gas diffusion is introduced by using liquid with low dissolved gas concentrations, and the SHS longevity is measured based on the status of gas on the entire surface. We find that the SHS longevity (tf) follows a scaling relation: tf ∼ (1 - s)-2, where s is the ratio of the gas concentration in liquid to that in the plastron. This scaling relation implies that as the gas is dissolving into the liquid, mass flux J reduces with time as J ∼ t-0.5. Furthermore, we find that the diffusion length LD reduces as the undersaturation level increases, following the scaling relation of LD ∼ (1 - s)-1. Lastly, we show that an SHS with a greater texture depth has a longer longevity and a larger LD. Our results provide a better understanding of SHS longevity in undersaturated liquid.

2.
Phys Rev E ; 108(1-1): 014409, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37583224

RESUMEN

A comparison of the movement characteristics between bacteria with and without wall accumulation could potentially elucidate the mechanisms of biofilm formation. However, authors of previous studies have mostly focused on the motion of bacteria that exhibit wall accumulation. Here, we applied digital holographic microscopy to compare the three-dimensional (3D) motions of two bacterial strains (Shewanella japonica UMDC19 and Shewanella sp. UMDC1): one exhibiting higher concentrations near the solid surfaces, and the other showing similar concentrations in near-wall and bulk regions. We found that the movement characteristics of the two strains are similar in the near-wall region but are distinct in the bulk region. Near the wall, both strains have small velocities and mostly perform subdiffusive motions. In the bulk, however, the bacteria exhibiting wall accumulation have significantly higher motility (including faster swimming speeds and longer movement trajectories) than the one showing no wall accumulation. Furthermore, we found that bacteria exhibiting wall accumulation slowly migrate from the bulk region to the near-wall region, and the hydrodynamic effect alone is insufficient to generate this migration speed. Future studies are required to test if the current findings apply to other bacterial species and strains.


Asunto(s)
Bacterias , Movimiento , Hidrodinámica , Movimiento (Física) , Natación
3.
Phys Biol ; 20(1)2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36541516

RESUMEN

Velocity correlation is an important feature for animal groups performing collective motions. Previous studies have mostly focused on the velocity correlation in a single ecological context. It is unclear whether correlation characteristics vary in a single species in different contexts. Here, we studied the velocity correlations in jackdaw flocks in two different contexts: transit flocks where birds travel from one location to another, and mobbing flocks where birds respond to an external stimulus. We found that in both contexts, although the interaction rules are different, the velocity correlations remain scale-free, i.e. the correlation length (the distance over which the velocity of two individuals is similar) increases linearly with the group size. Furthermore, we found that the correlation length is independent of the group density for transit flocks, but increases with increasing group density in mobbing flocks. This result confirms a previous observation that birds obey topological interactions in transit flocks, but switch to metric interactions in mobbing flocks. Finally, in both contexts, the impact of group polarization on correlation length is not significant. Our results suggest that wild animals are always able to respond coherently to perturbations regardless of context.


Asunto(s)
Conducta Animal , Cuervos , Animales , Vuelo Animal , Modelos Biológicos , Aves
4.
Appl Opt ; 61(32): 9415-9422, 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36606887

RESUMEN

This paper discusses the effect of hologram plane position on the tracking of particle motions in a 3D suspension using digital holography microscopy. We compare two optical configurations where the hologram plane is located either just outside the particle suspension or in the middle of the suspension. In both cases, we record two axially separated holograms using two cameras and subsequently adopt an iterative phase retrieval approach to solve the virtual image problem. We measure the settling motions of 2 µm spheres in a 2 mm thick sample containing 300 to 1500p a r t i c l e s/m m 3. We show that the optical setup where the hologram plane is located in the middle of the sample provides superior tracking results compared to the other, including higher accuracy in the measurement of particle displacement and longer particle trajectories. The accuracy of particle displacement increases by a maximum of 18%, and the trajectory length increases by a maximum of 16%. This superior outcome is due to the less overlapping of the diffraction patterns on the holograms when the separation distance between particles and the hologram plane is minimized.

5.
Appl Opt ; 60(24): 7099-7106, 2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34612994

RESUMEN

One shortcoming of digital in-line holography (DIH) is the low axial position accuracy due to the elongated particle traces in the reconstruction field. Here, we propose a method that improves the axial localization of DIH when applying it to track the motion of weak phase particles in dense suspensions. The proposed method detects particle positions based on local intensities in the reconstruction field consisting of scattering and incident waves. We perform both numerical and experimental tests and demonstrate that the proposed method has a higher axial position accuracy than the previous method based on the local intensities in the reconstructed scattered field. We show that the proposed method has an axial position error below 1.5 particle diameters for holograms with a particle concentration of 4700particles/mm3. The proposed method is further validated by tracking the Brownian motion of 1µmparticles in dense suspensions.

6.
Appl Opt ; 60(3): 626-634, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33690444

RESUMEN

When using inline digital holographic microscopy (DHM) and placing the hologram plane within a particle suspension, both real and virtual images come into focus during reconstruction, limiting our ability to resolve three-dimensional (3D) particle distribution. Here, we propose a new method to distinguish between real and virtual images in the 3D reconstruction field. This new method is based on the use of weak scatterers, and the fact that the real and virtual images of weak scatterers display distinct intensity distributions along the optical axis. We experimentally demonstrate this method by localizing and tracking 1 µm particles in a 3D volume with a particle concentration ranging from 200 to 6000particles/mm3. Unlike previous approaches to address the virtual image problem, this method does not require the recording of multiple holograms or the insertion of additional optical components. The proposed method allows the hologram plane to be placed within the sample volume, and extends the capability of DHM to measure the 3D movements of particles in deep samples far away from the optical window.

7.
Microscopy (Oxf) ; 70(4): 333-339, 2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-33372674

RESUMEN

The measurement of the volume of blood cells is important for clinical diagnosis and patient management. While digital holography microscopy has been used to obtain such information, previous off-axis setups usually involve a separated reference beam and are thus not very easy to implement. Here, we use the simple in-line Gabor setup without separation of a reference beam to measure the shape and volume of cells mounted on glass slides. Inherent to the in-line holograms, the reconstructed phase of the object is affected by the virtual image noise, producing errors in the cell volume measurement. We optimized our approach to use a single hologram without phase retrieval, increasing distance between cell and hologram plane to reduce the measurement error of cell volume to less than 6% in some instances. Therefore, the in-line Gabor setup can be a useful and simple tool to obtain volumetric and morphologic cellular information.


Asunto(s)
Tamaño de la Célula , Holografía , Holografía/métodos , Humanos , Microscopía
8.
Appl Opt ; 59(12): 3551-3559, 2020 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-32400473

RESUMEN

Digital inline holography (DIH) has long been used to measure the three-dimensional (3D) distribution of micrometer particles in suspensions. However, DIH experiences a virtual image problem that limits the particle density and the placement of the hologram plane relative to the sample volume. Here, we apply virtual-image-free phase retrieval digital holography (PRDH) to detect opaque particles in 3D volumes that exceed $ 2000\;{\rm particles}/{{\rm mm}^3} $2000particles/mm3. PRDH is based on recording two holograms whose planes are displaced along the optical axis, and then reconstructing the complete optical waves estimated by the iterative phase retrieval algorithm. Both numerical and experimental tests are performed, and results show that PRDH recovers the original 3D particle distributions even when the hologram planes are within the particle suspensions. Moreover, compared to single-hologram-based DIH, PRDH is proved to have better particle detection qualities. The uncertainty in the localization of particle centers is reduced to less than one particle diameter.

9.
Nat Commun ; 10(1): 5174, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31729384

RESUMEN

Collective behaviour is typically thought to arise from individuals following fixed interaction rules. The possibility that interaction rules may change under different circumstances has thus only rarely been investigated. Here we show that local interactions in flocks of wild jackdaws (Corvus monedula) vary drastically in different contexts, leading to distinct group-level properties. Jackdaws interact with a fixed number of neighbours (topological interactions) when traveling to roosts, but coordinate with neighbours based on spatial distance (metric interactions) during collective anti-predator mobbing events. Consequently, mobbing flocks exhibit a dramatic transition from disordered aggregations to ordered motion as group density increases, unlike transit flocks where order is independent of density. The relationship between group density and group order during this transition agrees well with a generic self-propelled particle model. Our results demonstrate plasticity in local interaction rules and have implications for both natural and artificial collective systems.


Asunto(s)
Cuervos/fisiología , Animales , Conducta Animal , Simulación por Computador , Modelos Biológicos , Conducta Social , Conducta Espacial
10.
J R Soc Interface ; 16(159): 20190450, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31640502

RESUMEN

The rapid, cohesive turns of bird flocks are one of the most vivid examples of collective behaviour in nature, and have attracted much research. Three-dimensional imaging techniques now allow us to characterize the kinematics of turning and their group-level consequences in precise detail. We measured the kinematics of flocks of wild jackdaws executing collective turns in two contexts: during transit to roosts and anti-predator mobbing. All flocks reduced their speed during turns, probably because of constraints on individual flight capability. Turn rates increased with the angle of the turn so that the time to complete turns remained constant. We also find that context may alter where turns are initiated in the flocks: for transit flocks in the absence of predators, initiators were located throughout the flocks, but for mobbing flocks with a fixed ground-based predator, they were always located at the front. Moreover, in some transit flocks, initiators were far apart from each other, potentially because of the existence of subgroups and variation in individual interaction ranges. Finally, we find that as the group size increased the information transfer speed initially increased, but rapidly saturated to a constant value. Our results highlight previously unrecognized complexity in turning kinematics and information transfer in social animals.


Asunto(s)
Cuervos/fisiología , Vuelo Animal/fisiología , Modelos Biológicos , Conducta Social , Animales
11.
Proc Biol Sci ; 286(1906): 20190865, 2019 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-31266425

RESUMEN

As one of nature's most striking examples of collective behaviour, bird flocks have attracted extensive research. However, we still lack an understanding of the attractive and repulsive forces that govern interactions between individuals within flocks and how these forces influence neighbours' relative positions and ultimately determine the shape of flocks. We address these issues by analysing the three-dimensional movements of wild jackdaws ( Corvus monedula) in flocks containing 2-338 individuals. We quantify the social interaction forces in large, airborne flocks and find that these forces are highly anisotropic. The long-range attraction in the direction perpendicular to the movement direction is stronger than that along it, and the short-range repulsion is generated mainly by turning rather than changing speed. We explain this phenomenon by considering wingbeat frequency and the change in kinetic and gravitational potential energy during flight, and find that changing the direction of movement is less energetically costly than adjusting speed for birds. Furthermore, our data show that collision avoidance by turning can alter local neighbour distributions and ultimately change the group shape. Our results illustrate the macroscopic consequences of anisotropic interaction forces in bird flocks, and help to draw links between group structure, local interactions and the biophysics of animal locomotion.


Asunto(s)
Cuervos/fisiología , Vuelo Animal/fisiología , Conducta Social , Animales , Conducta Animal , Fenómenos Biomecánicos , Reino Unido
12.
Nat Ecol Evol ; 3(6): 943-948, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31061474

RESUMEN

Current understanding of collective behaviour in nature is based largely on models that assume that identical agents obey the same interaction rules, but in reality interactions may be influenced by social relationships among group members. Here, we show that social relationships transform local interactions and collective dynamics. We tracked individuals' three-dimensional trajectories within flocks of jackdaws, a species that forms lifelong pair-bonds. Reflecting this social system, we find that flocks contain internal sub-structure, with discrete pairs of individuals tied together by spring-like effective forces. Within flocks, paired birds interacted with fewer neighbours than unpaired birds and flapped their wings more slowly, which may result in energy savings. However, flocks with more paired birds had shorter correlation lengths, which is likely to inhibit efficient information transfer through the flock. Similar changes to group properties emerge naturally from a generic self-propelled particle model. These results reveal a critical tension between individual- and group-level benefits during collective behaviour in species with differentiated social relationships, and have major evolutionary and cognitive implications.


Asunto(s)
Aves , Animales , Análisis Costo-Beneficio
13.
J R Soc Interface ; 15(147)2018 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-30355809

RESUMEN

Tracking the movements of birds in three dimensions is integral to a wide range of problems in animal ecology, behaviour and cognition. Multi-camera stereo-imaging has been used to track the three-dimensional (3D) motion of birds in dense flocks, but precise localization of birds remains a challenge due to imaging resolution in the depth direction and optical occlusion. This paper introduces a portable stereo-imaging system with improved accuracy and a simple stereo-matching algorithm that can resolve optical occlusion. This system allows us to decouple body and wing motion, and thus measure not only velocities and accelerations but also wingbeat frequencies along the 3D trajectories of birds. We demonstrate these new methods by analysing six flocking events consisting of 50 to 360 jackdaws (Corvus monedula) and rooks (Corvus frugilegus) as well as 32 jackdaws and 6 rooks flying in isolated pairs or alone. Our method allows us to (i) measure flight speed and wingbeat frequency in different flying modes; (ii) characterize the U-shaped flight performance curve of birds in the wild, showing that wingbeat frequency reaches its minimum at moderate flight speeds; (iii) examine group effects on individual flight performance, showing that birds have a higher wingbeat frequency when flying in a group than when flying alone and when flying in dense regions than when flying in sparse regions; and (iv) provide a potential avenue for automated discrimination of bird species. We argue that the experimental method developed in this paper opens new opportunities for understanding flight kinematics and collective behaviour in natural environments.


Asunto(s)
Cuervos/fisiología , Vuelo Animal/fisiología , Alas de Animales/fisiología , Animales , Fenómenos Biomecánicos
14.
Appl Opt ; 53(27): G1-G11, 2014 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-25322116

RESUMEN

This paper deals with two issues affecting the application of digital holographic microscopy (DHM) for measuring the spatial distribution of particles in a dense suspension, namely discriminating between real and virtual images and accurate detection of the particle center. Previous methods to separate real and virtual fields have involved applications of multiple phase-shifted holograms, combining reconstructed fields of multiple axially displaced holograms, and analysis of intensity distributions of weakly scattering objects. Here, we introduce a simple approach based on simultaneously recording two in-line holograms, whose planes are separated by a short distance from each other. This distance is chosen to be longer than the elongated trace of the particle. During reconstruction, the real images overlap, whereas the virtual images are displaced by twice the distance between hologram planes. Data analysis is based on correlating the spatial intensity distributions of the two reconstructed fields to measure displacement between traces. This method has been implemented for both synthetic particles and a dense suspension of 2 µm particles. The correlation analysis readily discriminates between real and virtual images of a sample containing more than 1300 particles. Consequently, we can now implement DHM for three-dimensional tracking of particles when the hologram plane is located inside the sample volume. Spatial correlations within the same reconstructed field are also used to improve the detection of the axial location of the particle center, extending previously introduced procedures to suspensions of microscopic particles. For each cross section within a particle trace, we sum the correlations among intensity distributions in all planes located symmetrically on both sides of the section. This cumulative correlation has a sharp peak at the particle center. Using both synthetic and recorded particle fields, we show that the uncertainty in localizing the axial location of the center is reduced to about one particle's diameter.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...