Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Transgenic Res ; 28(3-4): 299-315, 2019 08.
Article En | MEDLINE | ID: mdl-30868351

Root knot nematodes are serious threats to growth and yield of solaneous crops including tomato. In this study, a binary vector carrying Remusatia vivipara (rvl1) and Sclerotium rolfsii (srl1) lectin genes were introduced independently into Lycopersicon esculentum cv. Pusa Ruby via Agrobacterium tumefaciens for resistance against root knot nematode, Meloidogyne incognita. In total, one hundred and one rvl1 and srl1-transformed plants exhibiting kanamycin resistance were confirmed to carry transgenes as detected by polymerase chain reaction (PCR) with 4.59% transformation efficiency. Genetic analysis of T1 progeny confirmed Mendelian segregation of the introduced genes. Three events each of rvl1 and srl1 transgenic tomato were randomly selected for further confirmation by Southern and TAIL-PCR analyses. All three events of srl1 transgenics showed single copy transgene, whereas two rvl1 transgenic events showed single copy of transgene, while remaining event showed two copies of transgenes. Site of integration obtained for rvl1 and srl1 transgenic events by TAIL-PCR revealed that all the three events of rvl1 and srl1 transgenics differed for their site of integration and insertion sites did not contain any predicted gene. Moreover, expression of the rvl1 and srl1 transgenes was detected by haemagglutination assay in all three events of rvl1 and srl1, but not in non-transgenic tomato plant. Homozygous progenies of these events were grown and inoculated with M. incognita. Development and reproduction of M. incognita was severely affected in transgenic tomato plants expressing RVL1 and SRL1 exhibiting the high levels of resistance compared to non-transgenic plants. Therefore, these transgenic lines demonstrate a promising potential for variety development of tomato lines with enhanced resistance against M. incognita.


Lectins/metabolism , Plant Diseases/immunology , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/parasitology , Solanum lycopersicum/metabolism , Solanum lycopersicum/parasitology , Tylenchoidea/physiology , Animals , Ascomycota/chemistry , Herbivory , Lectins/genetics , Solanum lycopersicum/genetics , Magnoliopsida/chemistry , Plant Diseases/genetics , Plant Diseases/parasitology , Plant Roots/genetics , Plant Roots/metabolism , Plant Roots/parasitology , Plants, Genetically Modified/genetics
2.
PLoS One ; 12(10): e0186113, 2017.
Article En | MEDLINE | ID: mdl-29040293

A mapping population of recombinant inbred lines (RILs) derived from TMV 2 and its mutant, TMV 2-NLM was employed for mapping important taxonomic and productivity traits using genic and non-genic transposable element markers in peanut. Single nucleotide polymorphism and copy number variation using RAD-Sequencing data indicated very limited polymorphism between TMV 2 and TMV 2-NLM. But phenotypically they differed significantly for many taxonomic and productivity traits. Also, the RIL population showed significant variation for a few additional agronomic traits. A genetic linkage map of 1,205.66 cM was constructed using 91 genic and non-genic Arachis hypogaea transposable element (AhTE) markers. Using single marker analysis and QTL analysis, the markers with high phenotypic variance explained (PVE) were identified for branching pattern (32.3%), number of primary and secondary branches (19.9% and 28.4%, respectively), protein content (26.4%), days to 50% flowering (22.0%), content of oleic acid (15.1%), test weight (13.6%) and pod width (12.0%). Three genic markers (AhTE0357, AhTE0391, AhTE0025) with Arachis hypogaea miniature inverted-repeat transposable element (AhMITE1) activity in the genes Araip.TG1BL (B02 chromosome), Aradu.7N61X (A09 chromosome) and Aradu.7065G (A07 chromosome), respectively showed strong linkage with these taxonomic, productivity and quality traits. Since TMV 2 and TMV 2-NLM differed subtly at DNA level, the background noise in detecting the marker-trait associations was minimum; therefore, the markers identified in this study for the taxonomic and productivity traits may be significant and useful in peanut molecular breeding.


Arachis/genetics , DNA Transposable Elements/genetics , Genetic Markers/genetics , Quantitative Trait Loci/genetics , Arachis/growth & development , Breeding , Chromosome Mapping , Classification , Genetic Linkage , Genome, Plant , Phenotype , Polymorphism, Single Nucleotide/genetics
3.
Mol Breed ; 30(2): 773-788, 2012 Aug.
Article En | MEDLINE | ID: mdl-22924018

Late leaf spot (LLS) and rust have the greatest impact on yield losses worldwide in groundnut (Arachis hypogaea L.). With the objective of identifying tightly linked markers to these diseases, a total of 3,097 simple sequence repeats (SSRs) were screened on the parents of two recombinant inbred line (RIL) populations, namely TAG 24 × GPBD 4 (RIL-4) and TG 26 × GPBD 4 (RIL-5), and segregation data were obtained for 209 marker loci for each of the mapping populations. Linkage map analysis of the 209 loci resulted in the mapping of 188 and 181 loci in RIL-4 and RIL-5 respectively. Using 143 markers common to the two maps, a consensus map with 225 SSR loci and total map distance of 1,152.9 cM was developed. Comprehensive quantitative trait locus (QTL) analysis detected a total of 28 QTL for LLS and 15 QTL for rust. A major QTL for LLS, namely QTL(LLS)01 (GM1573/GM1009-pPGPseq8D09), with 10.27-62.34% phenotypic variance explained (PVE) was detected in all the six environments in the RIL-4 population. In the case of rust resistance, in addition to marker IPAHM103 identified earlier, four new markers (GM2009, GM1536, GM2301 and GM2079) showed significant association with the major QTL (82.96% PVE). Localization of 42 QTL for LLS and rust on the consensus map identified two candidate genomic regions conferring resistance to LLS and rust. One region present on linkage group AhXV contained three QTL each for LLS (up to 67.98% PVE) and rust (up to 82.96% PVE). The second candidate genomic region contained the major QTL with up to 62.34% PVE for LLS. Molecular markers associated with the major QTL for resistance to LLS and rust can be deployed in molecular breeding for developing groundnut varieties with enhanced resistance to foliar diseases. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11032-011-9661-z) contains supplementary material, which is available to authorized users.

4.
Glycoconj J ; 27(3): 309-20, 2010 Apr.
Article En | MEDLINE | ID: mdl-20213246

A mannose-binding lectin (RVL) was purified from the tubers of Remusatia vivipara, a monocot plant by single-step affinity chromatography on asialofetuin-Sepharose 4B. RVL agglutinated only rabbit erythrocytes and was inhibited by mucin, asialomucin, asialofetuin and thyroglobulin. Lectin activity was stable up to 80 degrees C and under wide range of pH (2.0-9.3). SDS-PAGE and gel filtration results showed the lectin is a homotetramer of Mr 49.5 kDa, but MALDI analysis showed two distinct peaks corresponding to subunit mass of 12 kDa and 12.7 kDa. Also the N-terminal sequencing gave two different sequences indicating presence of two polypeptide chains. Cloning of RVL gene indicated posttranslational cleavage of RVL precursor into two mature polypeptides of 116 and 117 amino-acid residues. Dynamic light scattering (DLS) and gel filtration studies together confirmed the homogeneity of the purified lectin and supported RVL as a dimer with Mr 49.5 kDa derived from single polypeptide precursor of 233 amino acids. Purified RVL exerts potent nematicidal activity on Meloidogyne incognita, a root knot nematode. Fluorescent confocal microscopic studies demonstrated the binding of RVL to specific regions of the alimentary-tract and exhibited a potent toxic effect on M. incognita. RVL-mucin complex failed to interact with the gut confirming the receptor mediated lectin interaction. Very high mortality (88%) rate was observed at lectin concentration as low as 30 microg/ml, suggesting its potential application in the development of nematode resistant transgenic-crops.


Magnoliopsida/chemistry , Mannose-Binding Lectin/isolation & purification , Mannose-Binding Lectin/pharmacology , Tylenchoidea/drug effects , Animals , Chromatography, Gel , Electrophoresis, Polyacrylamide Gel , Hydrogen-Ion Concentration , Mannose-Binding Lectin/genetics , Mannose-Binding Lectin/metabolism , Microscopy, Confocal , Scattering, Radiation , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Temperature
5.
Drug Discov Ther ; 2(4): 234-44, 2008 Aug.
Article En | MEDLINE | ID: mdl-22504635

Lethal tumor growth and progression cannot occur without angiogenesis, which facilitates cancer cell proliferation, survival, and dissemination. Among the many growth factors and cytokines engaged in angiogenesis, the cytokine vascular endothelial growth factor (VEGF) is regarded as the most potent and specific. Angiogenesis inhibitors are recognized as potentially useful agents for treating angiogenesis-associated diseases and VEGF represents a promising and well-studied target for antiangiogenic agents. In this study, we have tested the crude ethanolic extract of the leaves of Anacardium occidentale Linn, on Ehrlich ascites tumor cells (EAT) in vivo and in vitro. Anacardium occidentale extract (AOE) was able to suppress VEGF-induced angiogenesis in vivo in the chorioallantoic membrane, rat cornea, and tumorinduced angiogenesis in the peritoneum of EAT bearing mice. The extract inhibited cell proliferation of different tumor cells such as EAT, BeWo, and MCF-7 in vitro in a dose-dependent manner and it reduced the VEGF level in the ascites of treated mice. A decrease in the microvessel density count and CD31 antigen staining of treated mice peritoneum provide further evidence of its antiangiogenic activity. Our results from Northern blot analysis and ELISA demonstrate that AOE can downregulate endogenous VEGF gene expression at the mRNA and protein level. Furthermore, results of our gene analysis of VEGF-promoter luciferase reporter indicated that this effect is mediated by transcriptional repression of VEGF promoter activity in EAT cells treated with AOE. Taken together, the data suggest that the VEGF system of angiogenesis is the molecular target for the antiangiogenic action of AOE.

...