Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Anal Chim Acta ; 1292: 342233, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38309850

BACKGROUND: Label-free surface-enhanced Raman spectroscopy (SERS)-based metabolic profiling has great potential for early cancer diagnosis, but further advancements in analytical methods and clinical evidence studies are required for clinical applications. To improve the cancer diagnostic accuracy of label-free SERS spectral analysis of complex biological fluids, it is necessary to obtain specifically enhanced SERS signals of cancer-related metabolites present at low concentrations. RESULTS: This study presents a novel 3D SERS sensor, comprising a surface-carbonized silver nanowire (AgNW)-stacked filter membrane, alongside an optimized urine/methanol/chloroform extraction technique, which specifically changes the molecular adsorption and orientation of aromatic metabolites onto SERS substrates. By analyzing the pretreated urine samples on the surface-carbonized AgNW 3D SERS sensor, distinct and highly enhanced SERS peaks derived from semi-polar aromatic metabolites were observed for pancreatic cancer and prostate cancer samples compared with normal controls. Urine metabolite analysis using SERS fingerprinting successfully differentiated pancreatic cancer and prostate cancer groups from normal control group: normal control (n = 56), pancreatic cancer (n = 40), and prostate cancer (n = 39). SIGNIFICANCE AND NOVELTY: We confirmed the clinical feasibility of performing fingerprint analysis of urinary metabolites based on the surface-carbonized AgNW 3D SERS sensor and methanol/chloroform extraction for noninvasive cancer screening. This technology holds potential for large-scale screening owing to its high accuracy, and cost effective, simple and rapid detection method.


Metal Nanoparticles , Nanowires , Pancreatic Neoplasms , Prostatic Neoplasms , Male , Humans , Spectrum Analysis, Raman/methods , Early Detection of Cancer , Silver/chemistry , Chloroform , Methanol , Metal Nanoparticles/chemistry
2.
Biosens Bioelectron ; 224: 115076, 2023 Mar 15.
Article En | MEDLINE | ID: mdl-36641876

Practical human biofluid sensing requires a sensor device to differentiate patients from the normal group with high sensitivity and specificity. Label-free molecular identification from human biofluids allows direct classification of abnormal samples, providing insights for disease diagnosis and finding of new biomarkers. Here, we introduce a label-free surface-enhanced Raman scattering sensor based on a three-dimensional plasmonic coral nanoarchitecture (3D-PCN), which has strong electromagnetic field enhancement through multiple hot spots. The 3D-PCN was synthesized on a paper substrate via direct one-step gold reduction, forming a coral-like nanoarchitecture with high absorption property for biofluids. This was fabricated as a urine test strip and then integrated with a handheld Raman system to develop an on-site urine diagnostic platform. The developed platform successfully classified the human prostate and pancreatic cancer urines in a label-free method supported by two types of deep learning networks, with high clinical sensitivity and specificity. Our technology has the potential to be utilized not only for urinary cancer diagnosis but also for various human biofluid sensing systems as a future point-of-care testing platform.


Biosensing Techniques , Deep Learning , Metal Nanoparticles , Neoplasms , Humans , Early Detection of Cancer , Biosensing Techniques/methods , Spectrum Analysis, Raman/methods , Gold/chemistry , Metal Nanoparticles/chemistry
3.
Nanomaterials (Basel) ; 9(4)2019 Apr 16.
Article En | MEDLINE | ID: mdl-30995760

This paper reports a highly sensitive and selective surface-enhanced Raman spectroscopy (SERS) sensing platform. We used a simple fabrication method to generate plasmonic hotspots through a direct maskless plasma etching of a polymer surface and the surface tension-driven assembly of high aspect ratio Ag/polymer nanopillars. These collapsed plasmonic nanopillars produced an enhanced near-field interaction via coupled localized surface plasmon resonance. The high density of the small nanogaps yielded a high plasmonic detection performance, with an average SERS enhancement factor of 1.5 × 107. More importantly, we demonstrated that the encapsulation of plasmonic nanostructures within nanofiltration membranes allowed the selective filtration of small molecules based on the degree of membrane swelling in organic solvents and molecular size. Nanofiltration membrane-encapsulated SERS substrates do not require pretreatments. Therefore, they provide a simple and fast detection of toxic molecules using portable Raman spectroscopy.

4.
Nanomaterials (Basel) ; 9(3)2019 Mar 20.
Article En | MEDLINE | ID: mdl-30897804

The compact integration of semiconductor TiO2 nanoparticles (NPs) into the 3D crossed region of stacked plasmonic Ag nanowires (NWs) enhanced the photocatalytic activities through synergistic effects between the strong localized surface plasmon resonance (LSPR) excitation at the 3D cross-points of the Ag NWs and the efficient hot electron transfer at the interface between the Ag NWs and the TiO2 NPs. This paper explored new hybrid nanostructures based on the selective assembly of TiO2 NPs onto 3D cross-points of vertically stacked Ag NWs. The assembled TiO2 NPs directly contacted the 3D Ag NWs; therefore, charge separation occurred efficiently at the interface between the Ag NWs and the TiO2 NPs. The composite nanomaterials exhibited high extinction across the ultraviolet-visible range, rendering the nanomaterials high-performance photocatalysts across the full (ultraviolet-visible) and the visible spectral regions. Theoretical simulations clearly revealed that the local plasmonic field was highly enhanced at the 3D crossed regions of the vertically stacked Ag NWs. A Raman spectroscopic analysis of probe dye molecules under photodegradation conditions clearly revealed that the nanogap in the 3D crossed region was crucial for facilitating plasmon-enhanced photocatalysis and plasmon-enhanced spectroscopy.

...