Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
bioRxiv ; 2023 Nov 02.
Article En | MEDLINE | ID: mdl-37961135

Interictal spikes (IIS) and seizures are well-documented in Alzheimer's disease (AD). IIS typically outnumber seizures, supporting their role as a prominent EEG biomarker in AD. In preclinical models, we showed that high frequency oscillations (HFOs>250Hz) also occur, but it is currently unknown how HFOs compare to IIS. Therefore, we asked whether the incidence of HFOs and IIS differed and if they are differentially affected by behavioral state. We used three mouse lines that simulate aspects of AD: Tg2576, presenilin 2 knockout, and Ts65Dn mice. We recorded and quantified HFOs and IIS in the hippocampus during wakefulness, slow-wave sleep, and rapid eye movement sleep. In all three mouse lines, HFOs were more frequent than IIS. High numbers of HFOs correlated with fewer IIS, suggesting for the first time possible competing dynamics among them in AD. Notably, HFOs occurred in more behavioral states than IIS. In summary, HFOs were the most abundant EEG abnormality when compared to IIS, and occurred in all behavioral states, suggesting they are a better biomarker than IIS. These findings pertained to three mouse lines, which is important because they simulate different aspects of AD. We also show that HFOs may inhibit IIS. SHORT SUMMARY: Interictal spikes (IIS) and seizures are common in Alzheimer's disease (AD). IIS are more frequent than seizures and occur during earlier disease stages. In preclinical models, we showed that high frequency oscillations (HFOs>250Hz) occur, but a comparison between IIS and HFOs is lacking. Here we used 3 mouse lines with AD features and local field potential recordings to quantify IIS and HFOs. We found that HFOs outnumbered IIS and that their total numbers were inversely correlated with IIS. HFOs occurred during more behavioral states than IIS. Therefore, HFOs were the most abundant EEG abnormality, and this was generalizable across 3 types of preclinical AD.

2.
Neurobiol Dis ; 187: 106294, 2023 Oct 15.
Article En | MEDLINE | ID: mdl-37714307

Interictal spikes (IIS) are a common type of abnormal electrical activity in Alzheimer's disease (AD) and preclinical models. The brain regions where IIS are largest are not known but are important because such data would suggest sites that contribute to IIS generation. Because hippocampus and cortex exhibit altered excitability in AD models, we asked which areas dominate the activity during IIS along the cortical-CA1-dentate gyrus (DG) dorso-ventral axis. Because medial septal (MS) cholinergic neurons are overactive when IIS typically occur, we also tested the novel hypothesis that silencing the MS cholinergic neurons selectively would reduce IIS. We used mice that simulate aspects of AD: Tg2576 mice, presenilin 2 (PS2) knockout mice and Ts65Dn mice. To selectively silence MS cholinergic neurons, Tg2576 mice were bred with choline-acetyltransferase (ChAT)-Cre mice and offspring were injected in the MS with AAV encoding inhibitory designer receptors exclusively activated by designer drugs (DREADDs). We recorded local field potentials along the cortical-CA1-DG axis using silicon probes during wakefulness, slow-wave sleep (SWS) and rapid eye movement (REM) sleep. We detected IIS in all transgenic or knockout mice but not age-matched controls. IIS were detectable throughout the cortical-CA1-DG axis and occurred primarily during REM sleep. In all 3 mouse lines, IIS amplitudes were significantly greater in the DG granule cell layer vs. CA1 pyramidal layer or overlying cortex. Current source density analysis showed robust and early current sources in the DG, and additional sources in CA1 and the cortex also. Selective chemogenetic silencing of MS cholinergic neurons significantly reduced IIS rate during REM sleep without affecting the overall duration, number of REM bouts, latency to REM sleep, or theta power during REM. Notably, two control interventions showed no effects. Consistent maximal amplitude and strong current sources of IIS in the DG suggest that the DG is remarkably active during IIS. In addition, selectively reducing MS cholinergic tone, at times when MS is hyperactive, could be a new strategy to reduce IIS in AD.


Alzheimer Disease , Mice , Animals , Cholinergic Neurons , Dentate Gyrus/physiology , Cholinergic Agents , Mice, Knockout
3.
J Neurosci ; 43(41): 6930-6949, 2023 10 11.
Article En | MEDLINE | ID: mdl-37643861

A significant proportion of temporal lobe epilepsy (TLE) patients experience drug-resistant seizures associated with mesial temporal sclerosis, in which there is extensive cell loss in the hippocampal CA1 and CA3 subfields, with a relative sparing of dentate gyrus granule cells and CA2 pyramidal neurons (PNs). A role for CA2 in seizure generation was suggested based on findings of a reduction in CA2 synaptic inhibition (Williamson and Spencer, 1994) and the presence of interictal-like spike activity in CA2 in resected hippocampal tissue from TLE patients (Wittner et al., 2009). We recently found that in the pilocarpine-induced status epilepticus (PILO-SE) mouse model of TLE there was an increase in CA2 intrinsic excitability associated with a loss of CA2 synaptic inhibition. Furthermore, chemogenetic silencing of CA2 significantly reduced seizure frequency, consistent with a role of CA2 in promoting seizure generation and/or propagation (Whitebirch et al., 2022). In the present study, we explored the cellular basis of this inhibitory deficit using immunohistochemical and electrophysiological approaches in PILO-SE male and female mice. We report a widespread decrease in the density of pro-cholecystokinin-immunopositive (CCK+) interneurons and a functional impairment of CCK+ interneuron-mediated inhibition of CA2 PNs. We also found a disruption in the perisomatic perineuronal net in the CA2 stratum pyramidale. Such pathologic alterations may contribute to an enhanced excitation of CA2 PNs and CA2-dependent seizure activity in the PILO-SE mouse model.SIGNIFICANCE STATEMENT Impaired synaptic inhibition in hippocampal circuits has been identified as a key feature that contributes to the emergence and propagation of seizure activity in human patients and animal models of temporal lobe epilepsy (TLE). Among the hippocampal subfields, the CA2 region is particularly resilient to seizure-associated neurodegeneration and has been suggested to play a key role in seizure activity in TLE. Here we report that perisomatic inhibition of CA2 pyramidal neurons mediated by cholecystokinin-expressing interneurons is selectively reduced in acute hippocampal slices from epileptic mice. Parvalbumin-expressing interneurons, in contrast, appear relatively conserved in epileptic mice. These findings advance our understanding of the cellular mechanisms underlying inhibitory disruption in hippocampal circuits in a mouse model of spontaneous recurring seizures.


Epilepsy, Temporal Lobe , Status Epilepticus , Humans , Male , Female , Mice , Animals , CA2 Region, Hippocampal , Cholecystokinin , Hippocampus/physiology , Interneurons/physiology , Seizures , Pilocarpine/toxicity , Disease Models, Animal
4.
J Pharmacol Exp Ther ; 386(2): 259-265, 2023 08.
Article En | MEDLINE | ID: mdl-37316328

Post-traumatic epilepsy (PTE) occurs in some patients after moderate/severe traumatic brain injury (TBI). Although there are no approved therapies to prevent epileptogenesis, levetiracetam (LEV) is commonly given for seizure prophylaxis due to its good safety profile. This led us to study LEV as part of the Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx) Project. The objective of this work is to characterize the pharmacokinetics (PK) and brain uptake of LEV in naïve control rats and in the lateral fluid percussion injury (LFPI) rat model of TBI after either single intraperitoneal doses or a loading dose followed by a 7-day subcutaneous infusion. Sprague-Dawley rats were used as controls and for the LFPI model induced at the left parietal region using injury parameters optimized for moderate/severe TBI. Naïve and LFPI rats received either a bolus injection (intraperitoneal) or a bolus injection followed by subcutaneous infusion over 7 days. Blood and parietal cortical samples were collected at specified time points throughout the study. LEV concentrations in plasma and brain were measured using validated high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) methods. Noncompartmental analysis and a naive-pooled compartmental PK modeling approach were used. Brain-to-plasma ratios ranged from 0.54 to 1.4 to 1. LEV concentrations were well fit by one-compartment, first-order absorption PK models with a clearance of 112 ml/h per kg and volume of distribution of 293 ml/kg. The single-dose pharmacokinetic data were used to guide dose selection for the longer-term studies, and target drug exposures were confirmed. Obtaining LEV PK information early in the screening phase allowed us to guide optimal treatment protocols in EpiBioS4Rx. SIGNIFICANCE STATEMENT: The characterization of levetiracetam pharmacokinetics and brain uptake in an animal model of post-traumatic epilepsy is essential to identify target concentrations and guide optimal treatment for future studies.


Brain Injuries, Traumatic , Epilepsy, Post-Traumatic , Rats , Animals , Levetiracetam , Epilepsy, Post-Traumatic/drug therapy , Percussion , Tandem Mass Spectrometry , Rats, Sprague-Dawley , Brain , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/drug therapy , Anticonvulsants/therapeutic use , Disease Models, Animal
5.
bioRxiv ; 2023 Aug 16.
Article En | MEDLINE | ID: mdl-37163065

HIGHLIGHTS: Interictal spikes (IIS) occur in 3 mouse lines with Alzheimer's disease featuresIIS in all 3 mouse lines were most frequent during rapid eye movement (REM) sleepThe dentate gyrus showed larger IIS and earlier current sources vs. CA1 or cortexChemogenetic silencing of medial septum (MS) cholinergic neurons reduced IIS during REMMS silencing did not change REM latency, duration, number of bouts or theta power.Interictal spikes (IIS) are a common type of abnormal electrical activity in Alzheimer's disease (AD) and preclinical models. The brain regions where IIS are largest are not known but are important because such data would suggest sites that contribute to IIS generation. Because hippocampus and cortex exhibit altered excitability in AD models, we asked which areas dominate the activity during IIS along the cortical-CA1-dentate gyrus (DG) dorso-ventral axis. Because medial septal (MS) cholinergic neurons are overactive when IIS typically occur, we also tested the novel hypothesis that silencing the MS cholinergic neurons selectively would reduce IIS.We used mice that simulate aspects of AD: Tg2576 mice, presenilin 2 (PS2) knockout mice and Ts65Dn mice. To selectively silence MS cholinergic neurons, Tg2576 mice were bred with choline-acetyltransferase (ChAT)-Cre mice and offspring were injected in the MS with AAV encoding inhibitory designer receptors exclusively activated by designer drugs (DREADDs). We recorded local field potentials along the cortical-CA1-DG axis using silicon probes during wakefulness, slow-wave sleep (SWS) and rapid eye movement (REM) sleep.We detected IIS in all transgenic or knockout mice but not age-matched controls. IIS were detectable throughout the cortical-CA1-DG axis and occurred primarily during REM sleep. In all 3 mouse lines, IIS amplitudes were significantly greater in the DG granule cell layer vs. CA1 pyramidal layer or overlying cortex. Current source density analysis showed robust and early current sources in the DG, and additional sources in CA1 and the cortex also. Selective chemogenetic silencing of MS cholinergic neurons significantly reduced IIS rate during REM sleep without affecting the overall duration, number of REM bouts, latency to REM sleep, or theta power during REM. Notably, two control interventions showed no effects.Consistent maximal amplitude and strong current sources of IIS in the DG suggest that the DG is remarkably active during IIS. In addition, selectively reducing MS cholinergic tone, at times when MS is hyperactive, could be a new strategy to reduce IIS in AD.

6.
bioRxiv ; 2023 Jan 18.
Article En | MEDLINE | ID: mdl-36711983

Temporal lobe epilepsy (TLE) is characterized by spontaneous recurrent seizures, abnormal activity between seizures, and impaired behavior. CA2 pyramidal neurons (PNs) are potentially important because inhibiting them with a chemogenetic approach reduces seizure frequency in a mouse model of TLE. However, whether seizures could be stopped by timing inhibition just as a seizure begins is unclear. Furthermore, whether inhibition would reduce the cortical and motor manifestations of seizures are not clear. Finally, whether interictal EEG abnormalities and TLE comorbidities would be improved are unknown. Therefore, real-time optogenetic silencing of CA2 PNs during seizures, interictal activity and behavior were studied in 2 mouse models of TLE. CA2 silencing significantly reduced seizure duration and time spent in convulsive behavior. Interictal spikes and high frequency oscillations were significantly reduced, and social behavior was improved. Therefore, brief focal silencing of CA2 PNs reduces seizures, their propagation, and convulsive manifestations, improves interictal EEG, and ameliorates social comorbidities. HIGHLIGHTS: Real-time CA2 silencing at the onset of seizures reduces seizure durationWhen CA2 silencing reduces seizure activity in hippocampus it also reduces cortical seizure activity and convulsive manifestations of seizuresInterictal spikes and high frequency oscillations are reduced by real-time CA2 silencingReal-time CA2 silencing of high frequency oscillations (>250Hz) rescues social memory deficits of chronic epileptic mice.

7.
Epilepsia ; 64(1): 231-246, 2023 01.
Article En | MEDLINE | ID: mdl-36346209

OBJECTIVE: To test the hypothesis that high-frequency oscillations (HFOs) between 250 and 500 Hz occur in mouse models of Alzheimer's disease (AD) and thus are not unique to epilepsy. METHODS: Experiments were conducted in three mouse models of AD: Tg2576 mice that simulate a form of familial AD, presenilin 2 knock-out (PS2KO) mice, and the Ts65Dn model of Down's syndrome. We recorded HFOs using wideband (0.1-500 Hz, 2 kHz) intra-hippocampal and cortical surface electroencephalography (EEG) at 1 month until 24 months of age during wakefulness, slow wave sleep (SWS), and rapid eye movement (REM) sleep. In addition, interictal spikes (IISs) and seizures were analyzed for the possible presence of HFOs. Comparisons were made to the intra-hippocampal kainic acid and pilocarpine models of epilepsy. RESULTS: We describe for the first time that hippocampal and cortical HFOs are a new EEG abnormality in AD mouse models. HFOs occurred in all transgenic mice but no controls. They were also detectable as early as 1 month of age and prior to amyloid beta plaque neuropathology. HFOs were most frequent during SWS (vs REM sleep or wakefulness). Notably, HFOs in the AD and epilepsy models were indistinguishable in both spectral frequency and duration. HFOs also occurred during IISs and seizures in the AD models, although with altered spectral properties compared to isolated HFOs. SIGNIFICANCE: Our data demonstrate that HFOs, an epilepsy biomarker with high translational value, are not unique to epilepsy and thus not disease specific. Our findings also strengthen the idea of hyperexcitability in AD and its significant overlap with epilepsy. HFOs in AD mouse models may serve as an EEG biomarker, which is detectable from the scalp and thus amenable to noninvasive detection in people at risk for AD.


Alzheimer Disease , Epilepsy , Mice , Animals , Alzheimer Disease/genetics , Amyloid beta-Peptides , Epilepsy/genetics , Seizures , Electroencephalography , Disease Models, Animal , Mice, Transgenic
8.
Neurobiol Dis ; 166: 105637, 2022 05.
Article En | MEDLINE | ID: mdl-35091040

Intrahippocampal kainic acid (IHKA) has been widely implemented to simulate temporal lobe epilepsy (TLE), but evidence of robust seizures is usually limited. To resolve this problem, we slightly modified previous methods and show robust seizures are common and frequent in both male and female mice. We employed continuous wideband video-EEG monitoring from 4 recording sites to best demonstrate the seizures. We found many more convulsive seizures than most studies have reported. Mortality was low. Analysis of convulsive seizures at 2-4 and 10-12 wks post-IHKA showed a robust frequency (2-4 per day on average) and duration (typically 20-30 s) at each time. Comparison of the two timepoints showed that seizure burden became more severe in approximately 50% of the animals. We show that almost all convulsive seizures could be characterized as either low-voltage fast or hypersynchronous onset seizures, which has not been reported in a mouse model of epilepsy and is important because these seizure types are found in humans. In addition, we report that high frequency oscillations (>250 Hz) occur, resembling findings from IHKA in rats and TLE patients. Pathology in the hippocampus at the site of IHKA injection was similar to mesial temporal lobe sclerosis and reduced contralaterally. In summary, our methods produce a model of TLE in mice with robust convulsive seizures, and there is variable progression. HFOs are robust also, and seizures have onset patterns and pathology like human TLE. SIGNIFICANCE: Although the IHKA model has been widely used in mice for epilepsy research, there is variation in outcomes, with many studies showing few robust seizures long-term, especially convulsive seizures. We present an implementation of the IHKA model with frequent convulsive seizures that are robust, meaning they are >10 s and associated with complex high frequency rhythmic activity recorded from 2 hippocampal and 2 cortical sites. Seizure onset patterns usually matched the low-voltage fast and hypersynchronous seizures in TLE. Importantly, there is low mortality, and both sexes can be used. We believe our results will advance the ability to use the IHKA model of TLE in mice. The results also have important implications for our understanding of HFOs, progression, and other topics of broad interest to the epilepsy research community. Finally, the results have implications for preclinical drug screening because seizure frequency increased in approximately half of the mice after a 6 wk interval, suggesting that the typical 2 wk period for monitoring seizure frequency is insufficient.


Epilepsy, Temporal Lobe , Kainic Acid , Animals , Electroencephalography/methods , Epilepsy, Temporal Lobe/chemically induced , Epilepsy, Temporal Lobe/pathology , Female , Hippocampus/pathology , Humans , Kainic Acid/toxicity , Male , Mice , Rats , Seizures/chemically induced , Seizures/pathology
9.
Neuroscience ; 466: 235-247, 2021 07 01.
Article En | MEDLINE | ID: mdl-33961962

Convulsive status epilepticus (SE) in immature life is often associated with lasting neurobiological changes. We provoked SE by pentylenetetrazole in postnatal day 20 rat pups and examined communication modalities between the temporal hippocampus and medial entorhinal cortex (mEC) in vitro. After a minimum of 40 days post-SE, we prepared combined temporal hippocampal - medial entorhinal cortex (mEC) slices from conditioned (SE) and naïve (N) adult rats and recorded 4-aminopyridine-induced spontaneous epileptiform interictal-like discharges (IED) simultaneously from CA3 and mEC layer V-VI. We analyzed IED frequency and high frequency oscillations (HFOs) in intact slices and after surgical separation of hippocampus from mEC, by two successive incisions (Schaffer collateral cut, Parasubiculum cut). In all slices, IED frequency was higher in CA3 vs mEC (5N, 4SE) and Raster plots indicated no temporal coincidence between them either in intact or in CA1-cut slices (4N, 4SE). IED frequency was significantly higher in SE mEC, but similar in SE and N CA3, independently of connectivity state. Ripples (R) and Fast Ripples (FR) coincided with IEDs and their power differed between SE and N intact slices (22N, 12SE), both in CA3 and mEC. CA3 FR/R ratios were higher in the absence of mEC (14N, 8SE). Moreover, SE (vs N) slices showed significantly higher FR/R ratios independently of the presence of mEC. Taken together, these findings suggest lasting effects of immature SE in network dynamics governing hippocampal-entorhinal communication which may impact adult cognitive, behavioral, and/or seizure threshold sequalae.


Entorhinal Cortex , Status Epilepticus , 4-Aminopyridine , Animals , Hippocampus , Pentylenetetrazole , Rats , Status Epilepticus/chemically induced
10.
Epilepsy Behav ; 116: 107791, 2021 03.
Article En | MEDLINE | ID: mdl-33578223

Climate change is with us. As professionals who place value on evidence-based practice, climate change is something we cannot ignore. The current pandemic of the novel coronavirus, SARS-CoV-2, has demonstrated how global crises can arise suddenly and have a significant impact on public health. Global warming, a chronic process punctuated by acute episodes of extreme weather events, is an insidious global health crisis needing at least as much attention. Many neurological diseases are complex chronic conditions influenced at many levels by changes in the environment. This review aimed to collate and evaluate reports from clinical and basic science about the relationship between climate change and epilepsy. The keywords climate change, seasonal variation, temperature, humidity, thermoregulation, biorhythm, gene, circadian rhythm, heat, and weather were used to search the published evidence. A number of climatic variables are associated with increased seizure frequency in people with epilepsy. Climate change-induced increase in seizure precipitants such as fevers, stress, and sleep deprivation (e.g. as a result of more frequent extreme weather events) or vector-borne infections may trigger or exacerbate seizures, lead to deterioration of seizure control, and affect neurological, cerebrovascular, or cardiovascular comorbidities and risk of sudden unexpected death in epilepsy. Risks are likely to be modified by many factors, ranging from individual genetic variation and temperature-dependent channel function, to housing quality and global supply chains. According to the results of the limited number of experimental studies with animal models of seizures or epilepsy, different seizure types appear to have distinct susceptibility to seasonal influences. Increased body temperature, whether in the context of fever or not, has a critical role in seizure threshold and seizure-related brain damage. Links between climate change and epilepsy are likely to be multifactorial, complex, and often indirect, which makes predictions difficult. We need more data on possible climate-driven altered risks for seizures, epilepsy, and epileptogenesis, to identify underlying mechanisms at systems, cellular, and molecular levels for better understanding of the impact of climate change on epilepsy. Further focussed data would help us to develop evidence for mitigation methods to do more to protect people with epilepsy from the effects of climate change.


COVID-19/epidemiology , Climate Change , Epilepsy/epidemiology , Global Health/trends , Public Health/trends , Animals , COVID-19/prevention & control , Death, Sudden , Epilepsy/therapy , Hot Temperature/adverse effects , Humans , Humidity/adverse effects , Sleep Deprivation/epidemiology , Sleep Deprivation/therapy , Weather
11.
Neurobiol Dis ; 123: 86-99, 2019 03.
Article En | MEDLINE | ID: mdl-29936231

Post-traumatic epilepsy (PTE) is diagnosed in 20% of individuals with acquired epilepsy, and can impact significantly the quality of life due to the seizures and other functional or cognitive and behavioral outcomes of the traumatic brain injury (TBI) and PTE. There is no available antiepileptogenic or disease modifying treatment for PTE. Animal models of TBI and PTE have been developed, offering useful insights on the value of inflammatory, neurodegenerative pathways, hemorrhages and iron accumulation, calcium channels and other target pathways that could be used for treatment development. Most of the existing preclinical studies test efficacy towards pathologies of functional recovery after TBI, while a few studies are emerging testing the effects towards induced or spontaneous seizures. Here we review the existing preclinical trials testing new candidate treatments for TBI sequelae and PTE, and discuss future directions for efforts aiming at developing antiepileptogenic and disease-modifying treatments.


Brain Injuries, Traumatic/therapy , Epilepsy, Post-Traumatic/therapy , Animals , Anticonvulsants/therapeutic use , Brain/metabolism , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/metabolism , Disease Models, Animal , Encephalitis/etiology , Epilepsy, Post-Traumatic/etiology , Epilepsy, Post-Traumatic/metabolism , Humans , Signal Transduction
12.
Neuroscience ; 369: 386-398, 2018 01 15.
Article En | MEDLINE | ID: mdl-29175154

We have earlier demonstrated that a Status Epilepticus (SE) during CNS development has long-lasting effects on cholinergic neurotransmission, detectable in vitro and in vivo. In this work, we aimed to localize changes in temporal (T) vs septal (S) hippocampus and to correlate adult CA3 interictal epileptiform discharge (IED) frequency changes to those of Ripples (R) and Fast Ripples (FR) of the High-Frequency Oscillations (HFOs). Spontaneous IEDs were induced by bathing slices in Mg2+-free ACSF or in 4-Aminopyridine (4-AP, 50 µM) and data were analyzed separately for each model. IED frequencies were similar in same origin normal (N) slices across models, but differed in SE slices, being lower in Mg2+-free ACSF than in 4-AP, suggesting a post-SE long-term increase in a K+ conductance. Rs and FRs detected within IEDs had generally higher power in 4-AP than in Mg2+-free ACSF; FR/R ratio was the highest in T-SE slices in 4-AP and similar in all other slice groups. Carbachol or eserine increased IED rates universally, but had region- and conditioning-specific effects on HFOs, suggesting that IED frequency and HFOs represent possibly independent indices of excitability. The muscarinic antagonist atropine depressed IED rates with increasing effectiveness in S slices post-SE in both models. In conclusion, the long-term effects of an immature SE are region-specific within the hippocampus, affect differently synchronizing components like the IED frequency and HFOs and may shape neurotransmitter effects (ACh) on neuronal networks, thus affecting seizure threshold and information processing, especially in behavioral conditions of rising extracellular ACh levels.


Acetylcholinesterase/metabolism , CA3 Region, Hippocampal/physiopathology , Epilepsy/physiopathology , Status Epilepticus/physiopathology , Animals , CA3 Region, Hippocampal/growth & development , Disease Models, Animal , Pentylenetetrazole , Periodicity , Rats, Sprague-Dawley , Receptors, Muscarinic/metabolism , Tissue Culture Techniques
...