Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
PLoS One ; 19(5): e0302541, 2024.
Article En | MEDLINE | ID: mdl-38696430

This study investigated the effects of Rhizoctonia solani J.G. Kühn infestation on the volatile organic compound (VOC) emissions and biochemical composition of ten cultivars of chrysanthemum (Chrysanthemum × morifolium /Ramat./ Hemsl.) to bring new insights for future disease management strategies and the development of resistant chrysanthemum cultivars. The chrysanthemum plants were propagated vegetatively and cultivated in a greenhouse under semi-controlled conditions. VOCs emitted by the plants were collected using a specialized system and analyzed by gas chromatography/mass spectrometry. Biochemical analyses of the leaves were performed, including the extraction and quantification of chlorophylls, carotenoids, and phenolic compounds. The emission of VOCs varied among the cultivars, with some cultivars producing a wider range of VOCs compared to others. The analysis of the VOC emissions from control plants revealed differences in both their quality and quantity among the tested cultivars. R. solani infection influenced the VOC emissions, with different cultivars exhibiting varying responses to the infection. Statistical analyses confirmed the significant effects of cultivar, collection time, and their interaction on the VOCs. Correlation analyses revealed positive relationships between certain pairs of VOCs. The results show significant differences in the biochemical composition among the cultivars, with variations in chlorophyll, carotenoids, and phenolic compounds content. Interestingly, R. solani soil and leaf infestation decreased the content of carotenoids in chrysanthemums. Plants subjected to soil infestation were characterized with the highest content of phenolics. This study unveils alterations in the volatile and biochemical responses of chrysanthemum plants to R. solani infestation, which can contribute to the development of strategies for disease management and the improvement of chrysanthemum cultivars with enhanced resistance to R. solani.


Chrysanthemum , Plant Diseases , Rhizoctonia , Volatile Organic Compounds , Chrysanthemum/metabolism , Chrysanthemum/microbiology , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/analysis , Rhizoctonia/physiology , Plant Diseases/microbiology , Plant Leaves/metabolism , Plant Leaves/microbiology , Plant Leaves/chemistry , Gas Chromatography-Mass Spectrometry , Chlorophyll/metabolism , Chlorophyll/analysis , Carotenoids/metabolism , Carotenoids/analysis
2.
Sci Rep ; 13(1): 9999, 2023 06 20.
Article En | MEDLINE | ID: mdl-37339999

Stress factors occurring during the growing season and potato storage, can negatively affect the quality of tubers, including an increased tendency to enzymatic darkening. Abiotic stress due to water shortage is a major factor limiting agricultural production. The purpose of the study was to determine the effect of cultivation technology based on the use of biostimulant, hydrogel and irrigation as well as storage on the propensity to darkening and the content of sugars and organic acids. The results show that genotypic and technological variability in interaction with growing season conditions had a significant (p < 0.05) effect on the oxidative potential (OP) of potato tubers. The Denar cultivar, compared to the 'Gardena', was characterized by a lower tendency to enzymatic darkening. Application of biostimulant and hydrogel generally contributed to lowering the oxidative potential of the tested cultivars. The application of anti-stress agents had no effect on organic acid content. The long-term storage caused an increase in the content of total sugars (TS) (22%), reducing sugars (RS) (49%), chlorogenic acid (ACH) (11%), and loss of ascorbic acid (AA) (6%) in the tubers which contributed to an increase in the oxidative potential of potato tubers (16%). The correlation coefficients obtained (p < 0.05) confirm the dependence of OP on the concentration of organic acids.


Solanum tuberosum , Stress, Physiological , Oxidative Stress , Sugars
...