Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 11(29): e2400752, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38774949

RESUMEN

Organic-hybrid particle-based materials are increasingly important in (opto)electronics, sensing, and catalysis due to their printability and stretchability as well as their potential for unique synergistic functional effects. However, these functional properties are often limited due to poor electronic coupling between the organic shell and the nanoparticle. N-heterocyclic carbenes (NHCs) belong to the most promising anchors to achieve electronic delocalization across the interface, as they form robust and highly conductive bonds with metals and offer a plethora of functionalization possibilities. Despite the outstanding potential of the conductive NHC-metal bond, synthetic challenges have so far limited its application to the improvement of colloidal stabilities, disregarding the potential of the conductive anchor. Here, NHC anchors are used to modify redox-active gold nanoparticles (AuNPs) with conjugated triphenylamines (TPA). The resulting AuNPs exhibit excellent thermal and redox stability benefiting from the robust NHC-gold bond. As electrochromic materials, the hybrid materials show pronounced color changes from red to dark green, a highly stable cycling stability (1000 cycles), and a fast response speed (5.6 s/2.1 s). Furthermore, TPA-NHC@AuNP exhibits an ionization potential of 5.3 eV and a distinct out-of-plane conductivity, making them a promising candidate for application as hole transport layers in optoelectronic devices.

3.
ACS Nano ; 17(3): 3128-3134, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36638056

RESUMEN

Depending on its adsorption conformation on the Au(111) surface, a zwitterionic single-molecule machine works in two different ways under bias voltage pulses. It is a unidirectional rotor while anchored on the surface. It is a fast-drivable molecule vehicle (nanocar) while physisorbed. By tuning the surface coverage, the conformation of the molecule can be selected to be either rotor or nanocar. The inelastic tunneling excitation producing the movement is investigated in the same experimental conditions for both the unidirectional rotation of the rotor and the directed movement of the nanocar.

4.
ACS Biomater Sci Eng ; 9(5): 2140-2147, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-34519484

RESUMEN

In the midst of the COVID-19 pandemic, adaptive solutions are needed to allow us to make fast decisions and take effective sanitation measures, e.g., the fast screening of large groups (employees, passengers, pupils, etc.). Although being reliable, most of the existing SARS-CoV-2 detection methods cannot be integrated into garments to be used on demand. Here, we report an organic field-effect transistor (OFET)-based biosensing device detecting of both SARS-CoV-2 antigens and anti-SARS-CoV-2 antibodies in less than 20 min. The biosensor was produced by functionalizing an intrinsically stretchable and semiconducting triblock copolymer (TBC) film either with the anti-S1 protein antibodies (S1 Abs) or receptor-binding domain (RBD) of the S1 protein, targeting CoV-2-specific RBDs and anti-S1 Abs, respectively. The obtained sensing platform is easy to realize due to the straightforward fabrication of the TBC film and the utilization of the reliable physical adsorption technique for the molecular immobilization. The device demonstrates a high sensitivity of about 19%/dec and a limit of detection (LOD) of 0.36 fg/mL for anti-SARS-Cov-2 antibodies and, at the same time, a sensitivity of 32%/dec and a LOD of 76.61 pg/mL for the virus antigen detection. The TBC used as active layer is soft, has a low modulus of 24 MPa, and can be stretched up to 90% with no crack formation of the film. The TBC is compatible with roll-to-roll printing, potentially enabling the fabrication of low-cost wearable or on-skin diagnostic platforms aiming at point-of-care concepts.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , COVID-19/diagnóstico , Adsorción , Polímeros
5.
Nanoscale Adv ; 4(20): 4351-4357, 2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36321147

RESUMEN

Dihydroazulene/vinylheptafulvene pairs are known as molecular dipole switches that undergo a ring-opening/-closure reaction by UV irradiation or thermal excitation. Herein, we show that the ring-closure reaction of a single vinylheptafulvene adsorbed on the Au(111) surface can be induced by voltage pulses from the tip of a scanning tunneling microscope. This cyclization is accompanied by the elimination of HCN, as confirmed by simulations. When inducing lateral movements by applying voltage pulses with the STM tip, we observe that the response of the single molecules changes with the ring closing reaction. This behaviour is discussed by comparing the dipole moment and the charge distribution of the open and closed forms on the surface.

6.
Nanoscale ; 13(38): 16077-16083, 2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34549747

RESUMEN

We present the chemical anchoring of a DMBI-P molecule-rotor to the Au(111) surface after a dissociation reaction. At the temperature of 5 K, the anchored rotor shows a sequential unidirectional rotational motion through six defined stations induced by tunneling electrons. A typical voltage pulse of 400 mV applied on a specific location of the molecule causes a unidirectional rotation of 60° with a probability higher than 95%. When the temperature of the substrate increases above 20 K, the anchoring is maintained and the rotation stops being unidirectional and randomly explores the same six stations. Density functional theory simulations confirm the anchoring reaction. Experimentally, the rotation shows a clear threshold at the onset of the C-H stretch manifold, showing that the molecule is first vibrationally excited and later it decays into the rotational degrees of freedom.

7.
ACS Nano ; 15(10): 15422-15428, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34546032

RESUMEN

In this Perspective, we sketch out a vision of fast charging and self-healable energy systems that are primarily organic, feature only abundant elements, and operate with ions other than lithium. Using conductive oligomers as highly configurable building blocks, it is possible to create intrinsically adaptable conductive polymeric networks that can be rejuvenated and recycled using simple and safe chemical treatments. Using the versatile organic chemistry toolbox, these oligomers can be further functionalized, for example, with redox-active side chains for high charge storage capacity and ligands capable of complexing metal centers. Cross-linking with metal ions converts the soluble oligomers into insoluble supramolecular networks to yield high-performing electrode materials. The oligomer-based approach can thus provide an exceptional level of control to the design of organic-based battery materials.

8.
Polymers (Basel) ; 13(9)2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33946975

RESUMEN

Shear coating is a promising deposition method for upscaling device fabrication and enabling high throughput, and is furthermore suitable for translating to roll-to-roll processing. Although common polymer semiconductors (PSCs) are solution processible, they are still prone to mechanical failure upon stretching, limiting applications in e.g., electronic skin and health monitoring. Progress made towards mechanically compliant PSCs, e.g., the incorporation of soft segments into the polymer backbone, could not only allow such applications, but also benefit advanced fabrication methods, like roll-to-roll printing on flexible substrates, to produce the targeted devices. Tri-block copolymers (TBCs), consisting of an inner rigid semiconducting poly-diketo-pyrrolopyrrole-thienothiophene (PDPP-TT) block flanked by two soft elastomeric poly(dimethylsiloxane) (PDMS) chains, maintain good charge transport properties, while being mechanically soft and flexible. Potentially aiming at the fabrication of TBC-based wearable electronics by means of cost-efficient and scalable deposition methods (e.g., blade-coating), a tolerance of the electrical performance of the TBCs to the shear speed was investigated. Herein, we demonstrate that such TBCs can be deposited at high shear speeds (film formation up to a speed of 10 mm s-1). While such high speeds result in increased film thickness, no degradation of the electrical performance was observed, as was frequently reported for polymer-based OFETs. Instead, high shear speeds even led to a small improvement in the electrical performance: mobility increased from 0.06 cm2 V-1 s-1 at 0.5 mm s-1 to 0.16 cm2 V-1 s-1 at 7 mm s-1 for the TBC with 24 wt% PDMS, and for the TBC containing 37 wt% PDMS from 0.05 cm2 V-1 s-1 at 0.5 mm s-1 to 0.13 cm2 V-1 s-1 at 7 mm s-1. Interestingly, the improvement of mobility is not accompanied by any significant changes in morphology.

9.
Chem Asian J ; 16(8): 868-878, 2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33657276

RESUMEN

The analysis of low molecular weight (LMW) compounds is of great interest to detect small pharmaceutical drugs rapidly and sensitively, or to trace and understand metabolic pathways. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) plays a central role in the analysis of high molecular weight (bio)molecules. However, its application for LMW compounds is restricted by spectral interferences in the low m/z region, which are produced by conventional organic matrices. Several strategies regarding sample preparation have been investigated to overcome this problem. A different rationale is centred on developing new matrices which not only meet the fundamental requirements of good absorption and high ionization efficiency, but are also vacuum stable and "MALDI silent", i. e., do not give matrix-related signals in the LMW area. This review gives an overview on the rational design strategies used to develop matrix systems for the analysis of LMW compounds, focusing on (i) the modification of well-known matrices, (ii) the search for high molecular weight matrices, (iii) the development of binary, hybrid and nanomaterial-based matrices, (iv) the advance of reactive matrices and (v) the progress made regarding matrices for negative or dual polarity mode.


Asunto(s)
Compuestos Orgánicos/análisis , Estructura Molecular , Peso Molecular , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
10.
Angew Chem Int Ed Engl ; 60(8): 3912-3917, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33135279

RESUMEN

Recently, N-heterocyclic carbenes (NHCs) are explored as anchor groups to bind organic ligands to colloidal gold (i.e. gold nanoparticles, Au NPs), yet these efforts are confined to non-conjugated ligands so far-that is, focused solely on exploiting the stability aspect. Using NHCs to link Au NPs and electronically active organic components, for example, conjugated polymers (CPs), will allow capitalizing on both the stability as well as the inherent conductivity of the NHC anchors. Here, we report three types of Br-NHC-Au-X (X=Cl, Br) complexes, which, when used as starting points for Kumada polymerizations, yield regioregular poly(3-hexylthiophenes)-NHC-Au (P3HTs-NHC-Au) with narrow molecular weight distributions. The corresponding NPs are obtained via direct reduction and show excellent thermal as well as redox stability. The NHC anchors enable electron delocalization over the gold/CP interface, resulting in an improved electrochromic response behavior in comparison with P3HT-NHC-Au.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA