Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
bioRxiv ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38826462

RESUMEN

Normal hematopoietic stem and progenitor cells (HSPCs) inherently accumulate somatic mutations and lose clonal diversity with age, processes implicated in the development of myeloid malignancies 1 . The impact of exogenous stressors, such as cancer chemotherapies, on the genomic integrity and clonal dynamics of normal HSPCs is not well defined. We conducted whole-genome sequencing on 1,032 single-cell-derived HSPC colonies from 10 patients with multiple myeloma (MM), who had undergone various chemotherapy regimens. Our findings reveal that melphalan treatment distinctly increases mutational burden with a unique mutation signature, whereas other MM chemotherapies do not significantly affect the normal mutation rate of HSPCs. Among these therapy-induced mutations were several oncogenic drivers such as TET2 and PPM1D . Phylogenetic analysis showed a clonal architecture in post-treatment HSPCs characterized by extensive convergent evolution of mutations in genes such as TP53 and PPM1D . Consequently, the clonal diversity and structure of post-treatment HSPCs mirror those observed in normal elderly individuals, suggesting an accelerated clonal aging due to chemotherapy. Furthermore, analysis of matched therapy-related myeloid neoplasm (t-MN) samples, which occurred 1-8 years later, enabled us to trace the clonal origin of t-MNs to a single HSPC clone among a group of clones with competing malignant potential, indicating the critical role of secondary mutations in dictating clonal dominance and malignant transformation. Our findings suggest that cancer chemotherapy promotes an oligoclonal architecture with multiple HSPC clones possessing competing leukemic potentials, setting the stage for the selective emergence of a singular clone that evolves into t-MNs after acquiring secondary mutations. These results underscore the importance of further systematic research to elucidate the long-term hematological consequences of cancer chemotherapy.

2.
HGG Adv ; 4(4): 100224, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37593416

RESUMEN

Rhabdomyosarcoma accounts for roughly 1% of adult sarcomas, with pleomorphic rhabdomyosarcoma (PRMS) as the most common subtype. Survival outcomes remain poor for patients with PRMS, and little is known about the molecular drivers of this disease. To better characterize PRMS, we performed a broad array of genomic and immunostaining analyses on 25 patient samples. In terms of gene expression and methylation, PRMS clustered more closely with other complex karyotype sarcomas than with pediatric alveolar and embryonal rhabdomyosarcoma. Immune infiltrate levels in PRMS were among the highest observed in multiple sarcoma types and contrasted with low levels in other rhabdomyosarcoma subtypes. Lower immune infiltrate was associated with complete loss of both TP53 and RB1. This comprehensive characterization of the genetic, epigenetic, and immune landscape of PRMS provides a roadmap for improved prognostications and therapeutic exploration.


Asunto(s)
Rabdomiosarcoma Embrionario , Rabdomiosarcoma , Neoplasias de los Tejidos Blandos , Adulto , Humanos , Niño , Rabdomiosarcoma/genética , Rabdomiosarcoma Embrionario/genética , Genómica , Procesamiento Proteico-Postraduccional , Proteína p53 Supresora de Tumor/genética , Ubiquitina-Proteína Ligasas , Proteínas de Unión a Retinoblastoma/genética
4.
Brief Bioinform ; 24(4)2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37337757

RESUMEN

The T-cell receptor (TCR) repertoire is highly diverse among the population and plays an essential role in initiating multiple immune processes. TCR sequencing (TCR-seq) has been developed to profile the T cell repertoire. Similar to other high-throughput experiments, contamination can happen during several steps of TCR-seq, including sample collection, preparation and sequencing. Such contamination creates artifacts in the data, leading to inaccurate or even biased results. Most existing methods assume 'clean' TCR-seq data as the starting point with no ability to handle data contamination. Here, we develop a novel statistical model to systematically detect and remove contamination in TCR-seq data. We summarize the observed contamination into two sources, pairwise and cross-cohort. For both sources, we provide visualizations and summary statistics to help users assess the severity of the contamination. Incorporating prior information from 14 existing TCR-seq datasets with minimum contamination, we develop a straightforward Bayesian model to statistically identify contaminated samples. We further provide strategies for removing the impacted sequences to allow for downstream analysis, thus avoiding any need to repeat experiments. Our proposed model shows robustness in contamination detection compared with a few off-the-shelf detection methods in simulation studies. We illustrate the use of our proposed method on two TCR-seq datasets generated locally.


Asunto(s)
Receptores de Antígenos de Linfocitos T , Linfocitos T , Humanos , Teorema de Bayes , Receptores de Antígenos de Linfocitos T/genética , Modelos Estadísticos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
5.
Mol Cancer Res ; 21(5): 483-494, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37068116

RESUMEN

Adult-type granulosa cell tumors (aGCT) are rare ovarian sex cord tumors with few effective treatments for recurrent disease. The objective of this study was to characterize the tumor microenvironment (TME) of primary and recurrent aGCTs and to identify correlates of disease recurrence. Total RNA sequencing (RNA-seq) was performed on 24 pathologically confirmed, cryopreserved aGCT samples, including 8 primary and 16 recurrent tumors. After read alignment and quality-control filtering, DESeq2 was used to identify differentially expressed genes (DEG) between primary and recurrent tumors. Functional enrichment pathway analysis and gene set enrichment analysis was performed using "clusterProfiler" and "GSVA" R packages. TME composition was investigated through the analysis and integration of multiple published RNA-seq deconvolution algorithms. TME analysis results were externally validated using data from independent previously published RNA-seq datasets. A total of 31 DEGs were identified between primary and recurrent aGCTs. These included genes with known function in hormone signaling such as LHCGR and INSL3 (more abundant in primary tumors) and CYP19A1 (more abundant in recurrent tumors). Gene set enrichment analysis revealed that primarily immune-related and hormone-regulated gene sets expression was increased in recurrent tumors. Integrative TME analysis demonstrated statistically significant depletion of cancer-associated fibroblasts in recurrent tumors. This finding was confirmed in multiple independent datasets. IMPLICATIONS: Recurrent aGCTs exhibit alterations in hormone pathway gene expression as well as decreased infiltration of cancer-associated fibroblasts, suggesting dual roles for hormonal signaling and TME remodeling underpinning disease relapse.


Asunto(s)
Tumor de Células de la Granulosa , Adulto , Femenino , Humanos , Tumor de Células de la Granulosa/genética , Tumor de Células de la Granulosa/patología , Microambiente Tumoral/genética , Recurrencia Local de Neoplasia/genética , Hormonas
6.
Mod Pathol ; 36(1): 100028, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36788067

RESUMEN

Our understanding of the molecular mechanisms underlying postsurgical recurrence of non-small cell lung cancer (NSCLC) is rudimentary. Molecular and T cell repertoire intratumor heterogeneity (ITH) have been reported to be associated with postsurgical relapse; however, how ITH at the cellular level impacts survival is largely unknown. Here we report the analysis of 2880 multispectral images representing 14.2% to 27% of tumor areas from 33 patients with stage I NSCLC, including 17 cases (relapsed within 3 years after surgery) and 16 controls (without recurrence ≥5 years after surgery) using multiplex immunofluorescence. Spatial analysis was conducted to quantify the minimum distance between different cell types and immune cell infiltration around malignant cells. Immune ITH was defined as the variance of immune cells from 3 intratumor regions. We found that tumors from patients having relapsed display different immune biology compared with nonrecurrent tumors, with a higher percentage of tumor cells and macrophages expressing PD-L1 (P =.031 and P =.024, respectively), along with an increase in regulatory T cells (Treg) (P =.018), antigen-experienced T cells (P =.025), and effector-memory T cells (P =.041). Spatial analysis revealed that a higher level of infiltration of PD-L1+ macrophages (CD68+PD-L1+) or antigen-experienced cytotoxic T cells (CD3+CD8+PD-1+) in the tumor was associated with poor overall survival (P =.021 and P =.006, respectively). A higher degree of Treg ITH was associated with inferior recurrence-free survival regardless of tumor mutational burden (P =.022), neoantigen burden (P =.021), genomic ITH (P =.012) and T cell repertoire ITH (P =.001). Using multiregion multiplex immunofluorescence, we characterized ITH at the immune cell level along with whole exome and T cell repertoire sequencing from the same tumor regions. This approach highlights the role of immunoregulatory and coinhibitory signals as well as their spatial distribution and ITH that define the hallmarks of tumor relapse of stage I NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Antígeno B7-H1 , Recurrencia Local de Neoplasia/genética , Linfocitos T Citotóxicos/patología , Linfocitos T CD8-positivos
7.
J Exp Clin Cancer Res ; 41(1): 172, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35546239

RESUMEN

BACKGROUND: Lung cancer is the leading cause of cancer death, partially owing to its extensive heterogeneity. The analysis of intertumor heterogeneity has been limited by an inability to concurrently obtain tissue from synchronous metastases unaltered by multiple prior lines of therapy. METHODS: In order to study the relationship between genomic, epigenomic and T cell repertoire heterogeneity in a rare autopsy case from a 32-year-old female never-smoker with left lung primary late-stage lung adenocarcinoma (LUAD), we did whole-exome sequencing (WES), DNA methylation and T cell receptor (TCR) sequencing to characterize the immunogenomic landscape of one primary and 19 synchronous metastatic tumors. RESULTS: We observed heterogeneous mutation, methylation, and T cell patterns across distinct metastases. Only TP53 mutation was detected in all tumors suggesting an early event while other cancer gene mutations were later events which may have followed subclonal diversification. A set of prevalent T cell clonotypes were completely excluded from left-side thoracic tumors indicating distinct T cell repertoire profiles between left-side and non left-side thoracic tumors. Though a limited number of predicted neoantigens were shared, these were associated with homology of the T cell repertoire across metastases. Lastly, ratio of methylated neoantigen coding mutations was negatively associated with T-cell density, richness and clonality, suggesting neoantigen methylation may partially drive immunosuppression. CONCLUSIONS: Our study demonstrates heterogeneous genomic and T cell profiles across synchronous metastases and how restriction of unique T cell clonotypes within an individual may differentially shape the genomic and epigenomic landscapes of synchronous lung metastases.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Neoplasias Pulmonares , Adenocarcinoma/genética , Adenocarcinoma del Pulmón/genética , Adulto , Femenino , Humanos , Neoplasias Pulmonares/patología , Mutación , Secuenciación del Exoma
8.
Blood ; 140(16): 1753-1763, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-35512188

RESUMEN

There is a growing body of evidence that therapy-related myeloid neoplasms (t-MNs) with driver gene mutations arise in the background of clonal hematopoiesis (CH) under the positive selective pressure of chemo- and radiation therapies. Uncovering the exposure relationships that provide selective advantage to specific CH mutations is critical to understanding the pathogenesis and etiology of t-MNs. In a systematic analysis of 416 patients with t-MN and detailed prior exposure history, we found that TP53 mutations were significantly associated with prior treatment with thalidomide analogs, specifically lenalidomide. We demonstrated experimentally that lenalidomide treatment provides a selective advantage to Trp53-mutant hematopoietic stem and progenitor cells (HSPCs) in vitro and in vivo, the effect of which was specific to Trp53-mutant HSPCs and was not observed in HSPCs with other CH mutations. Because of the differences in CK1α degradation, pomalidomide treatment did not provide an equivalent level of selective advantage to Trp53-mutant HSPCs, providing a biological rationale for its use in patients at high risk for t-MN. These findings highlight the role of lenalidomide treatment in promoting TP53-mutated t-MNs and offer a potential alternative strategy to mitigate the risk of t-MN development.


Asunto(s)
Neoplasias Primarias Secundarias , Talidomida , Humanos , Lenalidomida/farmacología , Talidomida/efectos adversos , Células Madre Hematopoyéticas/metabolismo , Genes p53 , Mutación , Neoplasias Primarias Secundarias/etiología , Neoplasias Primarias Secundarias/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
9.
NPJ Precis Oncol ; 6(1): 21, 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35379887

RESUMEN

Desmoplastic small round cell tumor (DSRCT) is a highly aggressive soft tissue sarcoma that is characterized by the EWSR1-WT1 fusion protein. Patients present with hundreds of tumor implants in their abdominal cavity at various sites. To determine the genetic relatedness among these sites, exome and RNA sequencing were performed on 22 DSRCT specimens from 14 patients, four of whom had specimens from various tissue sites. Multi-site tumors from individual DSRCT patients had a shared origin and were highly related. Other than the EWSR1-WT1 fusion, very few secondary cancer gene mutations were shared among the sites. Among these, ARID1A, was recurrently mutated, which corroborates findings by others in DSRCT patients. Knocking out ARID1A in JN-DSRCT cells using CRISPR/CAS9 resulted in significantly lower cell proliferation and increased drug sensitivity. The transcriptome data were integrated using network analysis and drug target database information to identify potential therapeutic opportunities in EWSR1-WT1-associated pathways, such as PI3K and mTOR pathways. Treatment of JN-DSRCT cells with the PI3K inhibitor alpelisib and mTOR inhibitor temsirolimus reduced cell proliferation. In addition, the low mutation burden was associated with an immune-cold state in DSRCT. Together, these data reveal multiple genomic and immune features of DSRCT and suggest therapeutic opportunities in patients.

11.
Leukemia ; 36(5): 1253-1260, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35132195

RESUMEN

Recurring genetic abnormalities have been identified in Philadelphia chromosome (Ph)-positive acute lymphoblastic leukemia (ALL). Among them, IKZF1 deletion was associated with poor prognosis in patients treated with imatinib-based or dasatinib-based regimens. However, the molecular determinants for clinical outcomes in ponatinib-treated patients remain unknown. We systematically analyzed genetic alterations in adults with Ph-positive ALL uniformly treated in clinical trials with dasatinib-based regimens or a ponatinib-based regimen and investigated the molecular determinants for treatment outcomes using pretreatment specimens collected from adults with Ph-positive ALL treated with Hyper-CVAD plus dasatinib or ponatinib. DNA sequencing and SNP microarray were performed and recurrent genetic abnormalities were found in 84% of the patients, among whom IKZF1 deletion was most frequently detected (60%). IKZF1 deletion frequently co-occurred with other copy-number abnormalities (IKZF1plus, 46%) and was significantly associated with unfavorable overall survival (OS) (false discovery rate < 0.1) and increased cumulative incidence of relapse (p = 0.01). In a multivariate analysis, dasatinib therapy, lack of achievement of 3-month complete molecular response, and the presence of IKZF1plus status were significantly associated with poor OS. The differential impact of IKZF1plus was largely restricted to patients given Hyper-CVAD plus ponatinib; dasatinib-based regimens had unfavorable outcomes regardless of the molecular abnormalities.


Asunto(s)
Cromosoma Filadelfia , Leucemia-Linfoma Linfoblástico de Células Precursoras , Enfermedad Aguda , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Dasatinib/uso terapéutico , Dexametasona , Humanos , Imidazoles , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Piridazinas , Recurrencia
12.
Nat Commun ; 12(1): 7081, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34873156

RESUMEN

Histology plays an essential role in therapeutic decision-making for lung cancer patients. However, the molecular determinants of lung cancer histology are largely unknown. We conduct whole-exome sequencing and microarray profiling on 19 micro-dissected tumor regions of different histologic subtypes from 9 patients with lung cancers of mixed histology. A median of 68.9% of point mutations and 83% of copy number aberrations are shared between different histologic components within the same tumors. Furthermore, different histologic components within the tumors demonstrate similar subclonal architecture. On the other hand, transcriptomic profiling reveals shared pathways between the same histologic subtypes from different patients, which is supported by the analyses of the transcriptomic data from 141 cell lines and 343 lung cancers of different histologic subtypes. These data derived from mixed histologic subtypes in the setting of identical genetic background and exposure history support that the histologic fate of lung cancer cells is associated with transcriptomic features rather than the genomic profiles in most tumors.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Genómica/métodos , Neoplasias Pulmonares/genética , Transcriptoma/genética , Adenocarcinoma/genética , Anciano , Carcinoma de Células Grandes/genética , Carcinoma Neuroendocrino/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Células Escamosas/genética , Línea Celular Tumoral , Humanos , Neoplasias Pulmonares/clasificación , Persona de Mediana Edad , Fenotipo , Carcinoma Pulmonar de Células Pequeñas/genética , Secuenciación del Exoma/métodos
13.
Nat Commun ; 12(1): 6655, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34789716

RESUMEN

Small-cell lung cancer (SCLC) is speculated to harbor complex genomic intratumor heterogeneity (ITH) associated with high recurrence rate and suboptimal response to immunotherapy. Here, using multi-region whole exome/T cell receptor (TCR) sequencing as well as immunohistochemistry, we reveal a rather homogeneous mutational landscape but extremely cold and heterogeneous TCR repertoire in limited-stage SCLC tumors (LS-SCLCs). Compared to localized non-small cell lung cancers, LS-SCLCs have similar predicted neoantigen burden and genomic ITH, but significantly colder and more heterogeneous TCR repertoire associated with higher chromosomal copy number aberration (CNA) burden. Furthermore, copy number loss of IFN-γ pathway genes is frequently observed and positively correlates with CNA burden. Higher mutational burden, higher T cell infiltration and positive PD-L1 expression are associated with longer overall survival (OS), while higher CNA burden is associated with shorter OS in patients with LS-SCLC.


Asunto(s)
Neoplasias Pulmonares/genética , Carcinoma Pulmonar de Células Pequeñas/genética , Linfocitos T/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/patología , Variaciones en el Número de Copia de ADN , Femenino , Heterogeneidad Genética , Antígenos HLA/genética , Humanos , Interferón gamma/inmunología , Pérdida de Heterocigocidad , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Mutación , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Transducción de Señal/genética , Carcinoma Pulmonar de Células Pequeñas/inmunología , Carcinoma Pulmonar de Células Pequeñas/patología , Análisis de Supervivencia , Secuenciación del Exoma
14.
Nat Commun ; 12(1): 6071, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34663807

RESUMEN

In contrast to the curative effect of allogenic stem cell transplantation in acute myeloid leukemia via T cell activity, only modest responses are achieved with checkpoint-blockade therapy, which might be explained by T cell phenotypes and T cell receptor (TCR) repertoires. Here, we show by paired single-cell RNA analysis and TCR repertoire profiling of bone marrow cells in relapsed/refractory acute myeloid leukemia patients pre/post azacytidine+nivolumab treatment that the disease-related T cell subsets are highly heterogeneous, and their abundance changes following PD-1 blockade-based treatment. TCR repertoires expand and primarily emerge from CD8+ cells in patients responding to treatment or having a stable disease, while TCR repertoires contract in therapy-resistant patients. Trajectory analysis reveals a continuum of CD8+ T cell phenotypes, characterized by differential expression of granzyme B and a bone marrow-residing memory CD8+ T cell subset, in which a population with stem-like properties expressing granzyme K is enriched in responders. Chromosome 7/7q loss, on the other hand, is a cancer-intrinsic genomic marker of PD-1 blockade resistance in AML. In summary, our study reveals that adaptive T cell plasticity and genomic alterations determine responses to PD-1 blockade in acute myeloid leukemia.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Leucemia Mieloide Aguda/tratamiento farmacológico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/efectos de los fármacos , Anciano , Anciano de 80 o más Años , Azacitidina/uso terapéutico , Médula Ósea/efectos de los fármacos , Médula Ósea/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Deleción Cromosómica , Cromosomas Humanos Par 7/genética , Resistencia a Antineoplásicos/genética , Granzimas/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/inmunología , Persona de Mediana Edad , Nivolumab/uso terapéutico , Receptores de Antígenos de Linfocitos T/genética , Análisis de la Célula Individual , Subgrupos de Linfocitos T/efectos de los fármacos , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Transcriptoma/efectos de los fármacos
15.
Nat Med ; 27(8): 1432-1441, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34239137

RESUMEN

Treatment with combined immune checkpoint blockade (CICB) targeting CTLA-4 and PD-1 is associated with clinical benefit across tumor types, but also a high rate of immune-related adverse events. Insights into biomarkers and mechanisms of response and toxicity to CICB are needed. To address this, we profiled the blood, tumor and gut microbiome of 77 patients with advanced melanoma treated with CICB, with a high rate of any ≥grade 3 immune-related adverse events (49%) with parallel studies in pre-clinical models. Tumor-associated immune and genomic biomarkers of response to CICB were similar to those identified for ICB monotherapy, and toxicity from CICB was associated with a more diverse peripheral T-cell repertoire. Profiling of gut microbiota demonstrated a significantly higher abundance of Bacteroides intestinalis in patients with toxicity, with upregulation of mucosal IL-1ß in patient samples of colitis and in pre-clinical models. Together, these data offer potential new therapeutic angles for targeting toxicity to CICB.


Asunto(s)
Antígeno CTLA-4/inmunología , Microbioma Gastrointestinal , Receptor de Muerte Celular Programada 1/inmunología , Animales , Línea Celular Tumoral , Femenino , Humanos , Interleucina-1beta/inmunología , Melanoma , Ratones , Ratones Endogámicos C57BL
16.
Blood ; 138(18): 1733-1739, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34115096

RESUMEN

Although clonal hematopoiesis (CH) can precede the development of acute myeloid leukemia (AML), it can also persist after achieving remission. Long-term clonal dynamics and clinical implications of persistent CH are not well understood. Here, we studied the prevalence, dynamics, and clinical implications of postremission CH in 164 AML patients who attained complete remission after induction chemotherapies. Postremission CH was identified in 79 (48%) patients. Postremission CH persisted long term in 91% of the trackable patients despite treatment with various types of consolidation and maintenance therapies. Postremission CH was eradicated in 20 out of 21 (95%) patients who underwent allogeneic stem cell transplant. Although patients with postremission CH as a group had comparable hematopoiesis with those without it, patients with persistent TET2 mutations showed significant neutropenia long term. Postremission CH had little impact on relapse risk, nonrelapse mortality, and incidence of atherosclerotic cardiovascular disease, although the clinical impact of post-CR CH was heterogeneous among different mutations. These data suggest that although residual clonal hematopoietic stem cells are generally resistant to consolidation and maintenance therapies, they retain the ability to maintain normal hematopoiesis and have little impact on clinical outcomes. Larger study is needed to dissect the gene-specific heterogeneity.


Asunto(s)
Hematopoyesis Clonal , Leucemia Mieloide Aguda/genética , Mutación , Adulto , Anciano , Anciano de 80 o más Años , Antineoplásicos/uso terapéutico , Proteínas de Unión al ADN/genética , Dioxigenasas/genética , Femenino , Humanos , Leucemia Mieloide Aguda/terapia , Masculino , Persona de Mediana Edad , Inducción de Remisión , Trasplante de Células Madre , Adulto Joven
17.
Nat Commun ; 12(1): 2722, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33976164

RESUMEN

The mechanism by which anti-cancer immunity shapes early carcinogenesis of lung adenocarcinoma (ADC) is unknown. In this study, we characterize the immune contexture of invasive lung ADC and its precursors by transcriptomic immune profiling, T cell receptor (TCR) sequencing and multiplex immunofluorescence (mIF). Our results demonstrate that anti-tumor immunity evolved as a continuum from lung preneoplasia, to preinvasive ADC, minimally-invasive ADC and frankly invasive lung ADC with a gradually less effective and more intensively regulated immune response including down-regulation of immune-activation pathways, up-regulation of immunosuppressive pathways, lower infiltration of cytotoxic T cells (CTLs) and anti-tumor helper T cells (Th), higher infiltration of regulatory T cells (Tregs), decreased T cell clonality, and lower frequencies of top T cell clones in later-stages. Driver mutations, chromosomal copy number aberrations (CNAs) and aberrant DNA methylation may collectively impinge host immune responses and facilitate immune evasion, promoting the outgrowth of fit subclones in preneoplasia into dominant clones in invasive ADC.


Asunto(s)
Adenocarcinoma in Situ/genética , Adenocarcinoma del Pulmón/genética , Carcinogénesis/genética , Neoplasias Pulmonares/genética , Proteínas de Neoplasias/genética , Lesiones Precancerosas/genética , Transcriptoma , Adenocarcinoma in Situ/inmunología , Adenocarcinoma in Situ/patología , Adenocarcinoma del Pulmón/inmunología , Adenocarcinoma del Pulmón/patología , Carcinogénesis/inmunología , Carcinogénesis/patología , Aberraciones Cromosómicas , Células Clonales , Variaciones en el Número de Copia de ADN , Metilación de ADN , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunidad Innata , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/patología , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Proteínas de Neoplasias/inmunología , Lesiones Precancerosas/inmunología , Lesiones Precancerosas/patología , Transducción de Señal , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/patología , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/patología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/patología , Escape del Tumor/genética , Escape del Tumor/inmunología , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
19.
Nat Commun ; 12(1): 2607, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33972549

RESUMEN

Allosteric inhibitors of mutant IDH1 or IDH2 induce terminal differentiation of the mutant leukemic blasts and provide durable clinical responses in approximately 40% of acute myeloid leukemia (AML) patients with the mutations. However, primary resistance and acquired resistance to the drugs are major clinical issues. To understand the molecular underpinnings of clinical resistance to IDH inhibitors (IDHi), we perform multipronged genomic analyses (DNA sequencing, RNA sequencing and cytosine methylation profiling) in longitudinally collected specimens from 60 IDH1- or IDH2-mutant AML patients treated with the inhibitors. The analysis reveals that leukemia stemness is a major driver of primary resistance to IDHi, whereas selection of mutations in RUNX1/CEBPA or RAS-RTK pathway genes is the main driver of acquired resistance to IDHi, along with BCOR, homologous IDH gene, and TET2. These data suggest that targeting stemness and certain high-risk co-occurring mutations may overcome resistance to IDHi in AML.


Asunto(s)
Antineoplásicos/uso terapéutico , Metilación de ADN , Resistencia a Antineoplásicos/genética , Inhibidores Enzimáticos/uso terapéutico , Isocitrato Deshidrogenasa/antagonistas & inhibidores , Leucemia Mieloide Aguda/tratamiento farmacológico , Recurrencia Local de Neoplasia/genética , Células Madre/metabolismo , Anciano , Aminopiridinas/uso terapéutico , Proteínas Potenciadoras de Unión a CCAAT/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Metilación de ADN/efectos de los fármacos , Metilación de ADN/genética , Proteínas de Unión al ADN/genética , Dioxigenasas , Epigenómica , Evolución Molecular , Femenino , Glicina/análogos & derivados , Glicina/uso terapéutico , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Isocitrato Deshidrogenasa/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Masculino , Persona de Mediana Edad , Familia de Multigenes , Recurrencia Local de Neoplasia/tratamiento farmacológico , Proteínas Proto-Oncogénicas/genética , Piridinas/uso terapéutico , RNA-Seq , Proteínas Represoras/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Análisis de la Célula Individual , Triazinas/uso terapéutico , Proteínas ras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA