Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 54
1.
J Am Chem Soc ; 145(42): 23352-23360, 2023 Oct 25.
Article En | MEDLINE | ID: mdl-37824718

Soft porous crystals combine flexibility and porosity, allowing them to respond structurally to external physical and chemical environments. However, striking the right balance between flexibility and sufficient rigidity for porosity is challenging, particularly for molecular crystals formed by using weak intermolecular interactions. Here, we report a flexible oxygen-bridged prismatic organic cage molecule, Cage-6-COOH, which has three pillars that exhibit "hinge-like" rotational motion in the solid state. Cage-6-COOH can form a range of hydrogen-bonded organic frameworks (HOFs) where the "hinge" can accommodate a remarkable 67° dihedral angle range between neighboring units. This stems both from flexibility in the noncovalent hydrogen-bonding motifs in the HOFs and the molecular flexibility in the oxygen-linked cage hinge itself. The range of structures for Cage-6-COOH includes two topologically complex interpenetrated HOFs, CageHOF-2α and CageHOF-2ß. CageHOF-2α is nonporous, while CageHOF-2ß has permanent porosity and a surface area of 458 m2 g-1. The flexibility of Cage-6-COOH allows this molecule to rapidly transform from a low-crystallinity solid into the two crystalline interpenetrated HOFs, CageHOF-2α and CageHOF-2ß, under mild conditions simply by using acetonitrile or ethanol vapor, respectively. This self-healing behavior was selective, with the CageHOF-2ß structure exhibiting structural memory behavior.

2.
Chemistry ; 29(64): e202302420, 2023 Nov 16.
Article En | MEDLINE | ID: mdl-37615406

Crystalline porous organic salts (CPOS) are a subclass of molecular crystals. The low solubility of CPOS and their building blocks limits the choice of crystallisation solvents to water or polar alcohols, hindering the isolation, scale-up, and scope of the porous material. In this work, high throughput screening was used to expand the solvent scope, resulting in the identification of a new porous salt, CPOS-7, formed from tetrakis(4-sulfophenyl)methane (TSPM) and tetrakis(4-aminophenyl)methane (TAPM). CPOS-7 does not form with standard solvents for CPOS, rather a hydrated phase (Hydrate2920) previously reported is isolated. Initial attempts to translate the crystallisation to batch led to challenges with loss of crystallinity and Hydrate2920 forming favorably in the presence of excess water. Using acetic acid as a dehydrating agent hindered formation of Hydrate2920 and furthermore allowed for direct conversion to CPOS-7. To allow for direct formation of CPOS-7 in high crystallinity flow chemistry was used for the first time to circumvent the issues found in batch. CPOS-7 and Hydrate2920 were shown to have promise for water and CO2 capture, with CPOS-7 having a CO2 uptake of 4.3 mmol/g at 195 K, making it one of the most porous CPOS reported to date.

3.
Angew Chem Int Ed Engl ; 62(34): e202303167, 2023 Aug 21.
Article En | MEDLINE | ID: mdl-37021635

Hydrogen-bonded organic frameworks (HOFs) with low densities and high porosities are rare and challenging to design because most molecules have a strong energetic preference for close packing. Crystal structure prediction (CSP) can rank the crystal packings available to an organic molecule based on their relative lattice energies. This has become a powerful tool for the a priori design of porous molecular crystals. Previously, we combined CSP with structure-property predictions to generate energy-structure-function (ESF) maps for a series of triptycene-based molecules with quinoxaline groups. From these ESF maps, triptycene trisquinoxalinedione (TH5) was predicted to form a previously unknown low-energy HOF (TH5-A) with a remarkably low density of 0.374 g cm-3 and three-dimensional (3D) pores. Here, we demonstrate the reliability of those ESF maps by discovering this TH5-A polymorph experimentally. This material has a high accessible surface area of 3,284 m2 g-1 , as measured by nitrogen adsorption, making it one of the most porous HOFs reported to date.

4.
Chem Commun (Camb) ; 59(25): 3731-3734, 2023 Mar 23.
Article En | MEDLINE | ID: mdl-36896582

The synthesis of a new porous organic cage decorated with isopropyl moieties (CC21) was achieved from the reaction of triformylbenzene and an isopropyl functionalised diamine. Unlike structurally analogous porous organic cages, its synthesis proved challenging due to competitive aminal formation, rationalised using control experiments and computational modelling. The use of an additional amine was found to increase conversion to the desired cage.

5.
Chem Commun (Camb) ; 58(95): 13254-13257, 2022 Nov 29.
Article En | MEDLINE | ID: mdl-36367096

A porous molecular crystal (TSCl) was found to crystallise from dichloromethane and water during the synthesis of tetrakis(4-sulfophenylmethane). Crystal structure prediction (CSP) rationalises the driving force behind the formation of this porous TSCl phase and the intermolecular interactions that direct its formation. Gas sorption analysis showed that TSCl is permanently porous with selective adsorption of CO2 over N2, H2 and CH4 and a maximum CO2 uptake of 74 cm3 g-1 at 195 K. Calculations revealed that TSCl assembles via a combination of weak hydrogen bonds and strong dispersion interactions. This illustrates that CSP can underpin approaches to crystal engineering that do not involve more intuitive directional interactions, such as hydrogen bonding.

6.
Angew Chem Int Ed Engl ; 61(32): e202202450, 2022 Aug 08.
Article En | MEDLINE | ID: mdl-35687266

Porous materials that contain ultrafine pore apertures can separate hydrogen isotopes via kinetic quantum sieving (KQS). However, it is challenging to design materials with suitably narrow pores for KQS that also show good adsorption capacities and operate at practical temperatures. Here, we investigate a metal-organic cage (MOC) assembled from organic macrocycles and ZnII ions that exhibits narrow windows (<3.0 Å). Two polymorphs, referred to as 2α and 2ß, were observed. Both polymorphs exhibit D2 /H2 selectivity in the temperature range 30-100 K. At higher temperature (77 K), the D2 adsorption capacity of 2ß increases to about 2.7 times that of 2α, along with a reasonable D2 /H2 selectivity. Gas sorption analysis and thermal desorption spectroscopy suggest a gate-opening effect of the MOCs pore aperture. This promotes KQS at temperatures above liquid nitrogen temperature, indicating that MOCs hold promise for hydrogen isotope separation in real industrial environments.

7.
J Am Chem Soc ; 144(22): 9893-9901, 2022 Jun 08.
Article En | MEDLINE | ID: mdl-35634799

Mesoporous molecular crystals have potential applications in separation and catalysis, but they are rare and hard to design because many weak interactions compete during crystallization, and most molecules have an energetic preference for close packing. Here, we combine crystal structure prediction (CSP) with structural invariants to continuously qualify the similarity between predicted crystal structures for related molecules. This allows isomorphous substitution strategies, which can be unreliable for molecular crystals, to be augmented by a priori prediction, thus leveraging the power of both approaches. We used this combined approach to discover a rare example of a low-density (0.54 g cm-3) mesoporous hydrogen-bonded framework (HOF), 3D-CageHOF-1. This structure comprises an organic cage (Cage-3-NH2) that was predicted to form kinetically trapped, low-density polymorphs via CSP. Pointwise distance distribution structural invariants revealed five predicted forms of Cage-3-NH2 that are analogous to experimentally realized porous crystals of a chemically different but geometrically similar molecule, T2. More broadly, this approach overcomes the difficulties in comparing predicted molecular crystals with varying lattice parameters, thus allowing for the systematic comparison of energy-structure landscapes for chemically dissimilar molecules.

8.
J Am Chem Soc ; 144(21): 9434-9442, 2022 Jun 01.
Article En | MEDLINE | ID: mdl-35588159

Electrochemically active covalent organic frameworks (COFs) are promising electrode materials for Li-ion batteries. However, improving the specific capacities of COF-based electrodes requires materials with increased conductivity and a higher concentration of redox-active groups. Here, we designed a series of pyrene-4,5,9,10-tetraone COF (PT-COF) and carbon nanotube (CNT) composites (denoted as PT-COFX, where X = 10, 30, and 50 wt % of CNT) to address these challenges. Among the composites, PT-COF50 achieved a capacity of up to 280 mAh g-1 as normalized to the active COF material at a current density of 200 mA g-1, which is the highest capacity reported for a COF-based composite cathode electrode to date. Furthermore, PT-COF50 exhibited excellent rate performance, delivering a capacity of 229 mAh g-1 at 5000 mA g-1 (18.5C). Using operando Raman microscopy the reversible transformation of the redox-active carbonyl groups of PT-COF was determined, which rationalizes an overall 4 e-/4 Li+ redox process per pyrene-4,5,9,10-tetraone unit, accounting for its superior performance as a Li-ion battery electrode.

9.
Nature ; 604(7904): 72-79, 2022 04.
Article En | MEDLINE | ID: mdl-35388196

Covalent organic frameworks (COFs) are distinguished from other organic polymers by their crystallinity1-3, but it remains challenging to obtain robust, highly crystalline COFs because the framework-forming reactions are poorly reversible4,5. More reversible chemistry can improve crystallinity6-9, but this typically yields COFs with poor physicochemical stability and limited application scope5. Here we report a general and scalable protocol to prepare robust, highly crystalline imine COFs, based on an unexpected framework reconstruction. In contrast to standard approaches in which monomers are initially randomly aligned, our method involves the pre-organization of monomers using a reversible and removable covalent tether, followed by confined polymerization. This reconstruction route produces reconstructed COFs with greatly enhanced crystallinity and much higher porosity by means of a simple vacuum-free synthetic procedure. The increased crystallinity in the reconstructed COFs improves charge carrier transport, leading to sacrificial photocatalytic hydrogen evolution rates of up to 27.98 mmol h-1 g-1. This nanoconfinement-assisted reconstruction strategy is a step towards programming function in organic materials through atomistic structural control.

10.
Nat Mater ; 21(4): 463-470, 2022 04.
Article En | MEDLINE | ID: mdl-35013552

Membranes with high selectivity offer an attractive route to molecular separations, where technologies such as distillation and chromatography are energy intensive. However, it remains challenging to fine tune the structure and porosity in membranes, particularly to separate molecules of similar size. Here, we report a process for producing composite membranes that comprise crystalline porous organic cage films fabricated by interfacial synthesis on a polyacrylonitrile support. These membranes exhibit ultrafast solvent permeance and high rejection of organic dyes with molecular weights over 600 g mol-1. The crystalline cage film is dynamic, and its pore aperture can be switched in methanol to generate larger pores that provide increased methanol permeance and higher molecular weight cut-offs (1,400 g mol-1). By varying the water/methanol ratio, the film can be switched between two phases that have different selectivities, such that a single, 'smart' crystalline membrane can perform graded molecular sieving. We exemplify this by separating three organic dyes in a single-stage, single-membrane process.


Membranes, Artificial , Water , Porosity , Solvents
11.
J Am Chem Soc ; 143(37): 15011-15016, 2021 Sep 22.
Article En | MEDLINE | ID: mdl-34516737

The synthesis of three-dimensional (3D) covalent organic frameworks (COFs) requires high-connectivity polyhedral building blocks or the controlled alignment of building blocks. Here, we use the latter strategy to assemble square-planar cobalt(II) phthalocyanine (PcCo) units into the nbo topology by using tetrahedral spiroborate (SPB) linkages that were chosen to provide the necessary 90° dihedral angles between neighboring PcCo units. This yields a porous 3D COF, SPB-COF-DBA, with a noninterpenetrated nbo topology. SPB-COF-DBA shows high crystallinity and long-range order, with 11 resolved diffraction peaks in the experimental powder X-ray diffraction (PXRD) pattern. This well-ordered crystal lattice can also be imaged by using high-resolution transmission electron microscopy (HR-TEM). SPB-COF-DBA has cubic pores and exhibits permanent porosity with a Brunauer-Emmett-Teller (BET) surface area of 1726 m2 g-1.

12.
Chem Commun (Camb) ; 57(50): 6141-6144, 2021 Jun 22.
Article En | MEDLINE | ID: mdl-34042126

Macrocycles are usually non-porous or barely porous in the solid-state because of their small intrinsic cavity sizes and tendency to close-pack. Here, we use a heterochiral pairing strategy to introduce porosity in a trianglimine macrocycle, by co-crystallising two macrocycles with opposing chiralities. The stable racemic trianglimine crystal contains an interconnected pore network that has a Brunauer-Emmett-Teller (BET) surface area of 355 m2 g-1.

13.
Chemistry ; 27(41): 10589-10594, 2021 Jul 21.
Article En | MEDLINE | ID: mdl-33929053

Ethyl acetate is an important chemical raw material and solvent. It is also a key volatile organic compound in the brewing industry and a marker for lung cancer. Materials that are highly selective toward ethyl acetate are needed for its separation and detection. Here, we report a trianglimine macrocycle (TAMC) that selectively adsorbs ethyl acetate by forming a solvate. Crystal structure prediction showed this to be the lowest energy solvate structure available. This solvate leaves a metastable, "templated" cavity after solvent removal. Adsorption and breakthrough experiments confirmed that TAMC has adequate adsorption kinetics to separate ethyl acetate from azeotropic mixtures with ethanol, which is a challenging and energy-intensive industrial separation.


Acetates , Macrocyclic Compounds , Solvents
14.
Nat Comput Sci ; 1(4): 290-297, 2021 Apr.
Article En | MEDLINE | ID: mdl-38217168

The discovery of new structural and functional materials is driven by phase identification, often using X-ray diffraction (XRD). Automation has accelerated the rate of XRD measurements, greatly outpacing XRD analysis techniques that remain manual, time-consuming, error-prone and impossible to scale. With the advent of autonomous robotic scientists or self-driving laboratories, contemporary techniques prohibit the integration of XRD. Here, we describe a computer program for the autonomous characterization of XRD data, driven by artificial intelligence (AI), for the discovery of new materials. Starting from structural databases, we train an ensemble model using a physically accurate synthetic dataset, which outputs probabilistic classifications-rather than absolutes-to overcome the overconfidence in traditional neural networks. This AI agent behaves as a companion to the researcher, improving accuracy and offering substantial time savings. It is demonstrated on a diverse set of organic and inorganic materials characterization challenges. This method is directly applicable to inverse design approaches and robotic discovery systems, and can be immediately considered for other forms of characterization such as spectroscopy and the pair distribution function.

15.
Nanoscale ; 12(48): 24488-24494, 2020 Dec 23.
Article En | MEDLINE | ID: mdl-33319898

Nanostructured materials have interesting optical and electronic properties that are often drastically different from those of their bulk counterparts. While bulk organic/inorganic semiconductor composites have attracted much attention in the past decade, the preparation of organic/inorganic semiconductor nanocomposites (OISNs) still remains challenging. This work presents an assembly method for the co-encapsulation of titanium dioxide dots (TDs) with a cyano-substituted soluble conjugated polymer (CSCP) into a particular nanoparticle. The as-prepared CSCP/TD semiconductor nanocomposites (CSCP/TD NCs) exhibit different particle surfaces and morphologies depending on the mass ratio of the CSCP to TDs. We then tested them as photocatalysts for sacrificial hydrogen production from water. We found that nanocomposites outperformed nanoparticles of the individual components and physical mixtures thereof. The most active CSCP/TD NC had a catalytic H2 production rate that was 4.25 times higher than that of pure polymer nanoparticles prepared under the same conditions. We ascribe this to energy transfer between the semiconductors, where direct phase contact is essential, highlighting a potential avenue for using soluble, visible light-absorbing conjugated organic polymers to build Z-schemes for overall water splitting in the future.

16.
J Am Chem Soc ; 142(39): 16842-16848, 2020 Sep 30.
Article En | MEDLINE | ID: mdl-32893623

Three-dimensional (3D) covalent organic frameworks (COFs) are rare because there is a limited choice of organic building blocks that offer multiple reactive sites in a polyhedral geometry. Here, we synthesized an organic cage molecule (Cage-6-NH2) that was used as a triangular prism node to yield the first cage-based 3D COF, 3D-CageCOF-1. This COF adopts an unreported 2-fold interpenetrated acs topology and exhibits reversible dynamic behavior, switching between a small-pore (sp) structure and a large-pore (lp) structure. It also shows high CO2 uptake and captures water at low humidity (<40%). This demonstrates the potential for expanding the structural complexity of 3D COFs by using organic cages as the building units.

17.
ChemSusChem ; 13(20): 5571-5579, 2020 Oct 21.
Article En | MEDLINE | ID: mdl-32725860

Conjugated polymers with electrochemically active redox groups are a promising class of positive electrode material for lithium-ion batteries. However, most polymers, such as polyimides, possess low intrinsic conductivity, which results in low utilization of redox-active sites during charge cycling and, consequently, poor electrochemical performance. Here, it was shown that this limitation can be overcome by synthesizing polyimide composites (PIX) with reduced graphene oxide (rGO) using an in situ polycondensation reaction. The polyimide composites showed increased charge-transfer performance and much larger specific capacities, with PI50, which contains 50 wt % of rGO, showing the largest specific capacity of 172 mAh g-1 at 500 mA g-1 . This corresponds to a high utilization of the redox active sites in the active polyimide (86 %), and this composite retained 80 % of its initial capacity (125 mAh g-1 ) after 9000 cycles at 2000 mA g-1 .

18.
Angew Chem Int Ed Engl ; 59(38): 16755-16763, 2020 Sep 14.
Article En | MEDLINE | ID: mdl-32542926

Many interesting target guest molecules have low symmetry, yet most methods for synthesising hosts result in highly symmetrical capsules. Methods of generating lower symmetry pores are thus required to maximise the binding affinity in host-guest complexes. Herein, we use mixtures of tetraaldehyde building blocks with cyclohexanediamine to access low-symmetry imine cages. Whether a low-energy cage is isolated can be correctly predicted from the thermodynamic preference observed in computational models. The stability of the observed structures depends on the geometrical match of the aldehyde building blocks. One bent aldehyde stands out as unable to assemble into high-symmetry cages-and the same aldehyde generates low-symmetry socially self-sorted cages when combined with a linear aldehyde. We exploit this finding to synthesise a family of low-symmetry cages containing heteroatoms, illustrating that pores of varying geometries and surface chemistries may be reliably accessed through computational prediction and self-sorting.

19.
J Am Chem Soc ; 142(29): 12743-12750, 2020 07 22.
Article En | MEDLINE | ID: mdl-32597187

A molecular crystal of a 2-D hydrogen-bonded organic framework (HOF) undergoes an unusual structural transformation after solvent removal from the crystal pores during activation. The conformationally flexible host molecule, ABTPA, adapts its molecular conformation during activation to initiate a framework expansion. The microcrystalline activated phase was characterized by three-dimensional electron diffraction (3D ED), which revealed that ABTPA uses out-of-plane anthracene units as adaptive structural anchors. These units change orientation to generate an expanded, lower density framework material in the activated structure. The porous HOF, ABTPA-2, has robust dynamic porosity (SABET = 1183 m2 g-1) and exhibits negative area thermal expansion. We use crystal structure prediction (CSP) to understand the underlying energetics behind the structural transformation and discuss the challenges facing CSP for such flexible molecules.

20.
Chemistry ; 26(17): 3718-3722, 2020 Mar 23.
Article En | MEDLINE | ID: mdl-32011048

Molecular dumbbells with organic cage capping units were synthesised via a multi-component imine condensation between a tri-topic amine and di- and tetra-topic aldehydes. This is an example of self-sorting, which can be rationalised by computational modelling.

...