Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 26
1.
Front Microbiol ; 15: 1320845, 2024.
Article En | MEDLINE | ID: mdl-38314436

Objective: Human brucellosis causes serious public health concerns in Ningxia, China. Methods: This study employed epidemiological, bacteriological, and multiple-locus variable-number tandem repeat analysis (MLVA) methods to conduct an epidemiological investigation, which is necessary for devising tailored control strategies. Results: Between 1958 and 2022, 29,892 cases were reported, with an average annual number of cases and incidence of 467 and 7.1/100,000, respectively. The epidemic situation gradually worsened, with cases escalating from 26 cases in 2005 to 6,292 in 2022, with the incidence rate rising from 0.441 in 2005 to 86.83 in 2022. Geographically, the disease spread from a single affected county in 2004 to encompass all 22 counties in 2022. Yanchi County had the highest incidence, followed by the Hongsibao and Tongxin counties. These data suggest that Brucella infection has become a rampant regional concern in human brucellosis. Between 1958 and 2019, a total of 230 Brucella strains were identified across four studied hosts. These strains comprised four species with 12 biovars, including B. melitensis bv. 1, bv. 2, bv. 3, B. abortus bv. 1, bv. 3, bv. 4, bv. 5, bv. 6, bv. 7, B. suis bv. 1 and bv. 3, and B. canis. These data highlight the high species/biovars and host diversity of the Brucella population, posing a substantial challenge to brucellosis surveillance. There was an apparent transition from multiple species/biovars historically to the current dominance of a single species, B. melitensis, emphasizing the requirement for strengthening surveillance of B. melitensis. Genotypes 42 and 116, constituting 96.2% of the total number of genotypes, predominated in panel 1 and MLVA-11, indicating that all strains belong to the East Mediterranean lineage. MLVA cluster analysis revealed persistent transmission of dominant circulating genotypes, presenting an epidemic pattern characterized primarily by epidemiologically related cases with a few sporadic cases. Strains in this study exhibited high genetic homogeneity with strains from the Northwest, and those from Kazakhstan and Mongolia. Conclusion: The epidemic situation of human brucellosis has gradually worsened; the rampant epidemic of the disease has become a regional concern. The present study highlights that implementing the of targeted surveillance and intervention strategies is urge.

2.
Front Microbiol ; 14: 1259479, 2023.
Article En | MEDLINE | ID: mdl-38088960

Introduction: Epidemiological and clinical analyses of brucellosis are vital for public health leaders to reinforce disease surveillance and case management strategies. Methods: In this study, we aimed to analyse the epidemiology and clinical features of 1,590 cases of human brucellosis. Results: Approximately 72.08% (1,146) of the patients were male and 27.92% (444) were female. At least 88.18% (1,402/1,590) of the patients had a history of contact with sheep/goats and cattle, which was identified as the main risk factor for infection. The most common age group affected was 30-69 years, comprising 83.90% of all cases, with a median age of 47.3 years. Meanwhile, 75.03% (1,193/1,590) of the patients were farmers, followed by workers (10.50%, 167/1,590). The spectrum of clinical manifestations varied, and the major symptoms were fatigue (42.96%), joint pain (37.30%), and fever (23.33%). Arthritis was diagnosed in 989 patients, spondylitis was diagnosed in 469 patients, and external genital complications were found in at least 53.96% (858/1,590) of patients. In addition, approximately 41.25% (625/1,515) and 24.53% (390/1,590) of cases exhibited elevated CRP and D-dimer levels, respectively. Conversely, a significant decrease was observed in fibrinogen, total protein, and albumin levels, affecting 48.36% (769/1,590), 77.30% (1,226/1,586), and 91.80% (1,456/1,586) of the patients, respectively. These data demonstrate that brucellosis is a severe wasting disease that leads to an imbalance in nutritional metabolism and a decline in immunity. In total, 86.73% (1,379/1,590) of patients showed improvement with antibiotic therapy, while 13.27% (211/1,590) of patients experienced relapses or treatment failure. Conclusion: Brucellosis often presents with non-specific symptoms and laboratory findings, accompanied by multiple organ invasions, as well as being a vital challenge for diagnosis and treatment; thus, it is essential for a high degree of suspicion to be placed on brucellosis for a timely diagnosis and treatment. This study provides basic data and resources for developing tailored countermeasures to curb its further spread.

3.
Neurosci Lett ; 812: 137385, 2023 08 24.
Article En | MEDLINE | ID: mdl-37423465

Neuroinflammation plays an important part in secondary traumatic brain injury (TBI). Bromodomain-4 (BRD4) exerts specific proinflammatory effects in various neuropathological conditions. However, the underlying mechanism of action of BRD4 after TBI is not known. We measured BRD4 expression after TBI and investigated its possible mechanism of action. We established a model of craniocerebral injury in rats. After different intervention measures, we used western blotting, immunofluorescence, real-time reverse transcription-quantitative polymerase chain reaction, neuronal apoptosis, and behavioral tests to evaluate the effect of BRD4 on brain injury. At 72 h after brain injury, BRD4 overexpression aggravated the neuroinflammatory response, neuronal apoptosis, neurological dysfunction, and blood-brain-barrier damage, whereas upregulating expression of HMGB-1 and NF-κB had the opposite effect. Glycyrrhizic acid could reverse the proinflammatory effect of BRD4 overexpression upon TBI. Our results suggest that: (i) BRD4 may have a proinflammatory role in secondary brain injury through the HMGB-1/NF-κB signaling pathway; (ii) inhibition of BRD4 expression may play a part in secondary brain injury. BRD4 could be targeted therapy strategy for brain injury.


Brain Injuries, Traumatic , Brain Injuries , Animals , Rats , Apoptosis , Brain Injuries/complications , Brain Injuries, Traumatic/complications , Disease Models, Animal , HMGB Proteins/metabolism , HMGB Proteins/pharmacology , NF-kappa B/metabolism , Nuclear Proteins/metabolism , Rats, Sprague-Dawley , Signal Transduction
4.
J Korean Neurosurg Soc ; 66(4): 400-408, 2023 Jul.
Article En | MEDLINE | ID: mdl-36300321

OBJECTIVE: Nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) is a crucial factor for the survival of neuron. The role of NMNAT2 in damage following traumatic brain injury (TBI) remains unknown. This study was designed to investigate the role of NMNAT2 in TBI-induced neuronal degeneration and neurological deficits in rats. METHODS: The TBI model was established in Sprague-Dawley rats by a weight-dropping method. Real-time polymerase chain reaction, western blot, immunofluorescence, Fluoro-Jade C staining, and neurological score analyses were carried out. RESULTS: NMNAT2 mRNA and protein levels were increased in the injured-side cortex at 6 hours and peaked 12 hours after TBI. Knocking down NMNAT2 with an injection of small interfering RNA in lateral ventricle significantly exacerbated neuronal degeneration and neurological deficits after TBI, which were accompanied by increased expression of BCL-2-associated X protein (Bax). CONCLUSION: NMNAT2 expression is increased and NMNAT2 exhibits neuroprotective activity in the early stages after TBI, and Bax signaling pathway may be involved in the process. Thus, NMNAT2 is likely to be an important target to prevent secondary damage following TBI.

5.
Nat Commun ; 12(1): 6122, 2021 10 21.
Article En | MEDLINE | ID: mdl-34675199

Perspiration evaporation plays an indispensable role in human body heat dissipation. However, conventional textiles tend to focus on sweat removal and pay little attention to the basic thermoregulation function of sweat, showing limited evaporation ability and cooling efficiency in moderate/profuse perspiration scenarios. Here, we propose an integrated cooling (i-Cool) textile with unique functional structure design for personal perspiration management. By integrating heat conductive pathways and water transport channels decently, i-Cool exhibits enhanced evaporation ability and high sweat evaporative cooling efficiency, not merely liquid sweat wicking function. In the steady-state evaporation test, compared to cotton, up to over 100% reduction in water mass gain ratio, and 3 times higher skin power density increment for every unit of sweat evaporation are demonstrated. Besides, i-Cool shows about 3 °C cooling effect with greatly reduced sweat consumption than cotton in the artificial sweating skin test. The practical application feasibility of i-Cool design principles is well validated based on commercial fabrics. Owing to its exceptional personal perspiration management performance, we expect the i-Cool concept can provide promising design guidelines for next-generation perspiration management textiles.


Sweat/chemistry , Sweating , Textiles/analysis , Body Temperature Regulation , Hot Temperature , Humans , Skin Temperature , Sweat/metabolism
6.
Brain Res ; 1773: 147685, 2021 12 15.
Article En | MEDLINE | ID: mdl-34637761

The outer mitochondrial membrane protein mitochondrial Rho-GTPase 1 (Miro1) is known to be involved in the regulation of mitochondrial transport required for neuronal protection. Previous reports established that disruption of Miro1-dependent mitochondrial movement could result in nervous system diseases such as Parkinson's disease and Alzheimer's disease. This study was designed to explore the expression and mechanisms of Miro1 in secondary brain injury after traumatic brain injury (TBI). A total of 115 male Sprague Dawley rats were used in the weight-drop TBI rat model, and Miro1 in vivo knockdown was performed 24 h before TBI modeling by treatment with Miro1 short-interfering RNA. Real-time polymerase chain reaction, western blot, immunofluorescence, adenosine triphosphate (ATP) level assay, neuronal apoptosis, brain water content measurement, and neurological score analyses were carried out. Our results showed that the mRNA and protein levels of Miro1 were increased after TBI and co-localized with neurons and astrocytes in the peri-injury cortex. Moreover, Miro1 knockdown further exacerbated neuronal apoptosis, brain edema, and neurological deficits at 48 h after TBI, accompanied by impaired mitochondrial transport, reduction of mitochondria number and energy deficiency. Additionally, the apoptosis-related factors Bax upregulation and Bcl-2 downregulation as Miro1 knockdown after TBI implied that antiapoptotic effects on neuroprotection of Miro1, which were verified by the Fluoro-Jade C (FJC) staining and TUNEL staining. In conclusion, these findings suggest that Miro1 probably plays a neuroprotective role against secondary brain injury through the mitochondria trafficking pathway, suggesting that enhancing Miro1 might be a new strategy for the treatment of TBI.


Brain Injuries, Traumatic/metabolism , Cerebral Cortex/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Neuroprotection/genetics , rho GTP-Binding Proteins/metabolism , Animals , Apoptosis/physiology , Astrocytes/metabolism , Brain Injuries, Traumatic/genetics , Disease Models, Animal , Gene Knockdown Techniques , Male , Mitochondria/genetics , Mitochondrial Proteins/genetics , Neurons/metabolism , Rats , Rats, Sprague-Dawley , rho GTP-Binding Proteins/genetics
7.
Nat Commun ; 11(1): 606, 2020 Jan 30.
Article En | MEDLINE | ID: mdl-32001696

Manipulating liquids with tunable shape and optical functionalities in real time is important for electroactive flow devices and optoelectronic devices, but remains a great challenge. Here, we demonstrate electrotunable liquid sulfur microdroplets in an electrochemical cell. We observe electrowetting and merging of sulfur droplets under different potentiostatic conditions, and successfully control these processes via selective design of sulfiphilic/sulfiphobic substrates. Moreover, we employ the electrowetting phenomena to create a microlens based on the liquid sulfur microdroplets and tune its characteristics in real time through changing the shape of the liquid microdroplets in a fast, repeatable, and controlled manner. These studies demonstrate a powerful in situ optical battery platform for unraveling the complex reaction mechanism of sulfur chemistries and for exploring the rich material properties of the liquid sulfur, which shed light on the applications of liquid sulfur droplets in devices such as microlenses, and potentially other electrotunable and optoelectronic devices.

8.
Nat Nanotechnol ; 15(3): 231-237, 2020 Mar.
Article En | MEDLINE | ID: mdl-31988508

It has recently been shown that sulfur, a solid material in its elementary form S8, can stay in a supercooled state as liquid sulfur in an electrochemical cell. We establish that this newly discovered state could have implications for lithium-sulfur batteries. Here, through in situ studies of electrochemical sulfur generation, we show that liquid (supercooled) and solid elementary sulfur possess very different areal capacities over the same charging period. To control the physical state of sulfur, we studied its growth on two-dimensional layered materials. We found that on the basal plane, only liquid sulfur accumulates; by contrast, at the edge sites, liquid sulfur accumulates if the thickness of the two-dimensional material is small, whereas solid sulfur nucleates if the thickness is large (tens of nanometres). Correlating the sulfur states with their respective areal capacities, as well as controlling the growth of sulfur on two-dimensional materials, could provide insights for the design of future lithium-sulfur batteries.

9.
Nat Nanotechnol ; 15(2): 131-137, 2020 Feb.
Article En | MEDLINE | ID: mdl-31907442

To date, effective control over the electrochemical reduction of CO2 to multicarbon products (C ≥ 2) has been very challenging. Here, we report a design principle for the creation of a selective yet robust catalytic interface for heterogeneous electrocatalysts in the reduction of CO2 to C2 oxygenates, demonstrated by rational tuning of an assembly of nitrogen-doped nanodiamonds and copper nanoparticles. The catalyst exhibits a Faradaic efficiency of ~63% towards C2 oxygenates at applied potentials of only -0.5 V versus reversible hydrogen electrode. Moreover, this catalyst shows an unprecedented persistent catalytic performance up to 120 h, with steady current and only 19% activity decay. Density functional theory calculations show that CO binding is strengthened at the copper/nanodiamond interface, suppressing CO desorption and promoting C2 production by lowering the apparent barrier for CO dimerization. The inherent compositional and electronic tunability of the catalyst assembly offers an unrivalled degree of control over the catalytic interface, and thereby the reaction energetics and kinetics.

10.
Nat Commun ; 10(1): 2067, 2019 05 06.
Article En | MEDLINE | ID: mdl-31061393

Fast-charging and high-energy-density batteries pose significant safety concerns due to high rates of heat generation. Understanding how localized high temperatures affect the battery is critical but remains challenging, mainly due to the difficulty of probing battery internal temperature with high spatial resolution. Here we introduce a method to induce and sense localized high temperature inside a lithium battery using micro-Raman spectroscopy. We discover that temperature hotspots can induce significant lithium metal growth as compared to the surrounding lower temperature area due to the locally enhanced surface exchange current density. More importantly, localized high temperature can be one of the factors to cause battery internal shorting, which further elevates the temperature and increases the risk of thermal runaway. This work provides important insights on the effects of heterogeneous temperatures within batteries and aids the development of safer batteries, thermal management schemes, and diagnostic tools.

11.
Proc Natl Acad Sci U S A ; 116(3): 765-770, 2019 01 15.
Article En | MEDLINE | ID: mdl-30602455

Supercooled liquid sulfur microdroplets were directly generated from polysulfide electrochemical oxidation on various metal-containing electrodes. The sulfur droplets remain liquid at 155 °C below sulfur's melting point (Tm = 115 °C), with fractional supercooling change (Tm - Tsc)/Tm larger than 0.40. In operando light microscopy captured the rapid merging and shape relaxation of sulfur droplets, indicating their liquid nature. Micropatterned electrode and electrochemical current allow precise control of the location and size of supercooled microdroplets, respectively. Using this platform, we initiated and observed the rapid solidification of supercooled sulfur microdroplets upon crystalline sulfur touching, which confirms supercooled sulfur's metastability at room temperature. In addition, the formation of liquid sulfur in electrochemical cell enriches lithium-sulfur-electrolyte phase diagram and potentially may create new opportunities for high-energy Li-S batteries.

12.
Nat Commun ; 9(1): 5289, 2018 12 11.
Article En | MEDLINE | ID: mdl-30538249

Electrochemical intercalation of ions into the van der Waals gap of two-dimensional (2D) layered materials is a promising low-temperature synthesis strategy to tune their physical and chemical properties. It is widely believed that ions prefer intercalation into the van der Waals gap through the edges of the 2D flake, which generally causes wrinkling and distortion. Here we demonstrate that the ions can also intercalate through the top surface of few-layer MoS2 and this type of intercalation is more reversible and stable compared to the intercalation through the edges. Density functional theory calculations show that this intercalation is enabled by the existence of natural defects in exfoliated MoS2 flakes. Furthermore, we reveal that sealed-edge MoS2 allows intercalation of small alkali metal ions (e.g., Li+ and Na+) and rejects large ions (e.g., K+). These findings imply potential applications in developing functional 2D-material-based devices with high tunability and ion selectivity.

13.
Cell Cycle ; 17(16): 2001-2018, 2018.
Article En | MEDLINE | ID: mdl-30231673

Acute lung injury (ALI) is a critical clinical condition with a high mortality rate, characterized with excessive uncontrolled inflammation and apoptosis. Recently, microRNAs (miRNAs) have been found to play crucial roles in the amelioration of various inflammation-induced diseases, including ALI. However, it remains unknown the biological function and regulatory mechanisms of miRNAs in the regulation of inflammation and apoptosis in ALI. The aim of this study is to identify and evaluate the potential role of miRNAs in ALI and reveal the underlying molecular mechanisms of their effects. Here, we analyzed microRNA expression profiles in lung tissues from LPS-challenged mice using miRNA microarray. Because microRNA-27a (miR-27a) was one of the miRNAs being most significantly downregulated, which has an important role in regulation of inflammation, we investigated its function. Overexpression of miR-27a by agomir-27a improved lung injury, as evidenced by the reduced histopathological changes, lung wet/dry (W/D) ratio, lung microvascular permeability and apoptosis in the lung tissues, as well as ameliorative survival of ALI mice. This was accompanied by the alleviating of inflammation, such as the reduced total BALF cell and neutrophil counts, decreased levels of tumor necrosis factor alpha (TNF-α), interleukin-1 (IL-6) interleukin-1ß (IL-1ß) and myeloperoxidase (MPO) activity in BAL fluid. Toll-like receptor 4 (TLR4), an important regulator of the nuclear factor kappa-B (NF-κB) signaling pathway, was identified as a novel target of miR-27a in RAW264.7 cells. Furthermore, our results showed that LPS stimulation increased the expression of MyD88 and NF-κB p65 (p-p65), but inhibited the expression of inhibitor of nuclear factor-κB-α (IκB-α), suggesting the activation of NF-κB signaling pathway. Further investigations revealed that agomir-miR-27a reversed the promoting effect of LPS on NF-κB signaling pathway. The results here suggested that miR-27a alleviates LPS-induced ALI in mice via reducing inflammation and apoptosis through blocking TLR4/MyD88/NF-κB activation.


Acute Lung Injury/genetics , Acute Lung Injury/pathology , Apoptosis , Inflammation/pathology , MicroRNAs/metabolism , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/metabolism , Toll-Like Receptor 4/metabolism , Acute Lung Injury/chemically induced , Animals , Apoptosis/genetics , Base Sequence , Down-Regulation/genetics , Lipopolysaccharides , Mice , Mice, Inbred BALB C , MicroRNAs/genetics , Models, Biological , RAW 264.7 Cells , Signal Transduction
14.
Nat Nanotechnol ; 13(7): 589-595, 2018 07.
Article En | MEDLINE | ID: mdl-29760522

Carbon nanotubes (CNTs) are one of the strongest known materials. When assembled into fibres, however, their strength becomes impaired by defects, impurities, random orientations and discontinuous lengths. Fabricating CNT fibres with strength reaching that of a single CNT has been an enduring challenge. Here, we demonstrate the fabrication of CNT bundles (CNTBs) that are centimetres long with tensile strength over 80 GPa using ultralong defect-free CNTs. The tensile strength of CNTBs is controlled by the Daniels effect owing to the non-uniformity of the initial strains in the components. We propose a synchronous tightening and relaxing strategy to release these non-uniform initial strains. The fabricated CNTBs, consisting of a large number of components with parallel alignment, defect-free structures, continuous lengths and uniform initial strains, exhibit a tensile strength of 80 GPa (corresponding to an engineering tensile strength of 43 GPa), which is far higher than that of any other strong fibre.

15.
ACS Cent Sci ; 4(2): 260-267, 2018 Feb 28.
Article En | MEDLINE | ID: mdl-29532026

Lithium-sulfur (Li-S) batteries are regarded as promising next-generation high energy density storage devices for both portable electronics and electric vehicles due to their high energy density, low cost, and environmental friendliness. However, there remain some issues yet to be fully addressed with the main challenges stemming from the ionically insulating nature of sulfur and the dissolution of polysulfides in electrolyte with subsequent parasitic reactions leading to low sulfur utilization and poor cycle life. The high flammability of sulfur is another serious safety concern which has hindered its further application. Herein, an aqueous inorganic polymer, ammonium polyphosphate (APP), has been developed as a novel multifunctional binder to address the above issues. The strong binding affinity of the main chain of APP with lithium polysulfides blocks diffusion of polysulfide anions and inhibits their shuttling effect. The coupling of APP with Li ion facilitates ion transfer and promotes the kinetics of the cathode reaction. Moreover, APP can serve as a flame retardant, thus significantly reducing the flammability of the sulfur cathode. In addition, the aqueous characteristic of the binder avoids the use of toxic organic solvents, thus significantly improving safety. As a result, a high rate capacity of 520 mAh g-1 at 4 C and excellent cycling stability of ∼0.038% capacity decay per cycle at 0.5 C for 400 cycles are achieved based on this binder. This work offers a feasible and effective strategy for employing APP as an efficient multifunctional binder toward building next-generation high energy density Li-S batteries.

16.
Nat Nanotechnol ; 13(4): 294-299, 2018 04.
Article En | MEDLINE | ID: mdl-29483599

Doped semiconductors are the most important building elements for modern electronic devices 1 . In silicon-based integrated circuits, facile and controllable fabrication and integration of these materials can be realized without introducing a high-resistance interface2,3. Besides, the emergence of two-dimensional (2D) materials enables the realization of atomically thin integrated circuits4-9. However, the 2D nature of these materials precludes the use of traditional ion implantation techniques for carrier doping and further hinders device development 10 . Here, we demonstrate a solvent-based intercalation method to achieve p-type, n-type and degenerately doped semiconductors in the same parent material at the atomically thin limit. In contrast to naturally grown n-type S-vacancy SnS2, Cu intercalated bilayer SnS2 obtained by this technique displays a hole field-effect mobility of ~40 cm2 V-1 s-1, and the obtained Co-SnS2 exhibits a metal-like behaviour with sheet resistance comparable to that of few-layer graphene 5 . Combining this intercalation technique with lithography, an atomically seamless p-n-metal junction could be further realized with precise size and spatial control, which makes in-plane heterostructures practically applicable for integrated devices and other 2D materials. Therefore, the presented intercalation method can open a new avenue connecting the previously disparate worlds of integrated circuits and atomically thin materials.

17.
Nano Lett ; 18(2): 1130-1138, 2018 02 14.
Article En | MEDLINE | ID: mdl-29297691

Aerosol-induced haze problem has become a serious environmental concern. Filtration is widely applied to remove aerosols from gas streams. Despite classical filtration theories, the nanoscale capture and evolution of aerosols is not yet clearly understood. Here we report an in situ investigation on the nanoscale capture and evolution of aerosols on polyimide nanofibers. We discovered different capture and evolution behaviors among three types of aerosols: wetting liquid droplets, nonwetting liquid droplets, and solid particles. The wetting droplets had small contact angles and could move, coalesce, and form axisymmetric conformations on polyimide nanofibers. In contrast, the nonwetting droplets had a large contact angle on polyimide nanofibers and formed nonaxisymmetric conformations. Different from the liquid droplets, the solid particles could not move along the nanofibers and formed dendritic structures. This study provides an important insight for obtaining a deep understanding of the nanoscale capture and evolution of aerosols and benefits future design and development of advanced filters.

18.
Proc Natl Acad Sci U S A ; 114(46): 12138-12143, 2017 11 14.
Article En | MEDLINE | ID: mdl-29087316

Lithium, with its high theoretical specific capacity and lowest electrochemical potential, has been recognized as the ultimate negative electrode material for next-generation lithium-based high-energy-density batteries. However, a key challenge that has yet to be overcome is the inferior reversibility of Li plating and stripping, typically thought to be related to the uncontrollable morphology evolution of the Li anode during cycling. Here we show that Li-metal texturing (preferential crystallographic orientation) occurs during electrochemical deposition, which governs the morphological change of the Li anode. X-ray diffraction pole-figure analysis demonstrates that the texture of Li deposits is primarily dependent on the type of additive or cross-over molecule from the cathode side. With adsorbed additives, like LiNO3 and polysulfide, the lithium deposits are strongly textured, with Li (110) planes parallel to the substrate, and thus exhibit uniform, rounded morphology. A growth diagram of lithium deposits is given to connect various texture and morphology scenarios for different battery electrolytes. This understanding of lithium electrocrystallization from the crystallographic point of view provides significant insight for future lithium anode materials design in high-energy-density batteries.

19.
ACS Nano ; 11(8): 8320-8328, 2017 08 22.
Article En | MEDLINE | ID: mdl-28682058

The interface between cells and nonbiological surfaces regulates cell attachment, chronic tissue responses, and ultimately the success of medical implants or biosensors. Clinical and laboratory studies show that topological features of the surface profoundly influence cellular responses; for example, titanium surfaces with nano- and microtopographical structures enhance osteoblast attachment and host-implant integration as compared to a smooth surface. To understand how cells and tissues respond to different topographical features, it is of critical importance to directly visualize the cell-material interface at the relevant nanometer length scale. Here, we present a method for in situ examination of the cell-to-material interface at any desired location, based on focused ion beam milling and scanning electron microscopy imaging to resolve the cell membrane-to-material interface with 10 nm resolution. By examining how cell membranes interact with topographical features such as nanoscale protrusions or invaginations, we discovered that the cell membrane readily deforms inward and wraps around protruding structures, but hardly deforms outward to contour invaginating structures. This asymmetric membrane response (inward vs outward deformation) causes the cleft width between the cell membrane and the nanostructure surface to vary by more than an order of magnitude. Our results suggest that surface topology is a crucial consideration for the development of medical implants or biosensors whose performances are strongly influenced by the cell-to-material interface. We anticipate that the method can be used to explore the direct interaction of cells/tissue with medical devices such as metal implants in the future.

20.
Proc Natl Acad Sci U S A ; 114(5): 840-845, 2017 01 31.
Article En | MEDLINE | ID: mdl-28096362

Polysulfide binding and trapping to prevent dissolution into the electrolyte by a variety of materials has been well studied in Li-S batteries. Here we discover that some of those materials can play an important role as an activation catalyst to facilitate oxidation of the discharge product, Li2S, back to the charge product, sulfur. Combining theoretical calculations and experimental design, we select a series of metal sulfides as a model system to identify the key parameters in determining the energy barrier for Li2S oxidation and polysulfide adsorption. We demonstrate that the Li2S decomposition energy barrier is associated with the binding between isolated Li ions and the sulfur in sulfides; this is the main reason that sulfide materials can induce lower overpotential compared with commonly used carbon materials. Fundamental understanding of this reaction process is a crucial step toward rational design and screening of materials to achieve high reversible capacity and long cycle life in Li-S batteries.

...