Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros











Intervalo de año de publicación
1.
Environ Res ; 263(Pt 1): 120030, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39299450

RESUMEN

Referring to the natural succession to restore polluted land is one of the most vital assignments to solving the environmental problems. However, there is little understanding of the natural restoration of nutrient biogeochemical cycles in abandoned land with severe metal pollution. To clarify the nutrient cycling process and the influence of organisms on it, we investigated the magnitude of rhizosphere effects on soil nitrogen (N), phosphorus (P) and sulphur (S) cycles in natural restoration of an abandoned metal mine, as well as the roles of plants and microorganisms in the nutrient cycles. Our data revealed that the rhizosphere had higher levels of ammoniation than non-rhizosphere soil at both stages of restoration. In the early stage, the rhizosphere had greater levels of inorganic phosphorus and organophosphorus solubilisation, as well as sulphite oxidation, compared to non-rhizosphere soil. The bacterial composition influenced the N and S cycles, while the fungal composition had the greatest effect on the P cycles. Furthermore, rhizosphere nutrition cycles and microbial communities altered according plant strategy. Overall, the plants that colonize the early stages of natural recovery demonstrate enhanced restoration of nutrient efficiency. These results contribute to further knowledge of nutrient recovery in mining areas, as well as suggestions for selecting remedial microorganisms and plants in metal-polluted environments.

2.
Life Sci ; 354: 122952, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39127317

RESUMEN

The bidirectional regulation between the gut microbiota and brain, known as gut-brain axis, has received significant attention. The myelin sheath, produced by oligodendrocytes or Schwann cells, is essential for efficient nervous signal transmission and the maintenance of brain function. Growing evidence shows that both oligodendrogenesis and myelination are modulated by gut microbiota and its metabolites, and when dysbiosis occurs, changes in the microbiota composition and/or associated metabolites may impact developmental myelination and the occurrence of neurodevelopmental disabilities. Although the link between the microbiota and demyelinating disease such as multiple sclerosis has been extensively studied, our knowledge about the role of the microbiota in other myelin-related disorders, such as neurodegenerative diseases, is limited. Mechanistically, the microbiota-oligodendrocyte axis is primarily mediated by factors such as inflammation, the vagus nerve, endocrine hormones, and microbiota metabolites as evidenced by metagenomics, metabolomics, vagotomy, and morphological and molecular approaches. Treatments targeting this axis include probiotics, prebiotics, microbial metabolites, herbal bioactive compounds, and specific dietary management. In addition to the commonly used approaches, viral vector-mediated tracing and gene manipulation, integrated multiomics and multicenter clinical trials will greatly promote the mechanistic and interventional studies and ultimately, the development of new preventive and therapeutic strategies against gut-oligodendrocyte axis-mediated brain impairments. Interestingly, recent findings showed that microbiota dysbiosis can be induced by hippocampal myelin damage and is reversible by myelin-targeted drugs, which provides new insights into understanding how hippocampus-based functional impairment (such as in neurodegenerative Alzheimer's disease) regulates the peripheral homeostasis of microbiota and associated systemic disorders.


Asunto(s)
Eje Cerebro-Intestino , Enfermedades Desmielinizantes , Microbioma Gastrointestinal , Homeostasis , Oligodendroglía , Microbioma Gastrointestinal/fisiología , Humanos , Animales , Oligodendroglía/metabolismo , Homeostasis/fisiología , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/microbiología , Eje Cerebro-Intestino/fisiología , Disbiosis/microbiología , Vaina de Mielina/metabolismo
3.
Environ Pollut ; 359: 124601, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39047889

RESUMEN

An in-depth understanding of the micro-ecological mechanisms underlying the remediation of heavy metal-contaminated soils by biochar amendment is crucial for enhancing the efficacy of biochar-microbe combination. Nevertheless, this remediation mechanism remains elusive. Consequently, we performed a pot experiment to investigate the effects of biochar on soil fungal communities in a cadmium (Cd) and lead (Pb) contaminated soil. The results demonstrated that the amendment of biochar derived from rice straw significantly reshaped soil fungal communities, leading to the enrichment of members of the genus Aspergillus, which was found to correlate significantly with the remediation of heavy metal-contaminated soil. A representative of the targeted Aspergillus species (strain F8) was successfully isolated. The results of the pot experiments demonstrated that the inoculation with the isolate F8 can promote plant growth, immobilize soil Cd and Pb, and decrease tomato plant uptake of Cd and Pb. These results indicate that the enrichment of specific taxa induced by biochar amendment is associated with the remediation of heavy metal-contaminated soil. Therefore, this study provides new evidence to support the indirect mechanism of biochar in the remediation of heavy metal-contaminated soil by reshaping the soil microbiome.


Asunto(s)
Aspergillus , Biodegradación Ambiental , Cadmio , Carbón Orgánico , Plomo , Microbiología del Suelo , Contaminantes del Suelo , Carbón Orgánico/química , Cadmio/metabolismo , Contaminantes del Suelo/metabolismo , Plomo/metabolismo , Aspergillus/metabolismo , Suelo/química , Oryza/microbiología , Restauración y Remediación Ambiental/métodos
4.
Int J Mol Sci ; 25(11)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38892238

RESUMEN

Flavonoids are secondary metabolites that play important roles in the resistance of plants to abiotic stress. Despite the widely reported adverse effects of lead (Pb) contamination on maize, the effects of Pb on the biosynthetic processes of flavonoids in maize roots are still unknown. In the present work, we employed a combination of multi-omics and conventional assay methods to investigate the effects of two concentrations of Pb (40 and 250 mg/kg) on flavonoid biosynthesis in maize roots and the associated molecular regulatory mechanisms. Analysis using conventional assays revealed that 40 and 250 mg/kg Pb exposure increased the lead content of maize root to 0.67 ± 0.18 mg/kg and 3.09 ± 0.02 mg/kg, respectively, but they did not result in significant changes in maize root length. The multi-omics results suggested that exposure to 40 mg/kg of Pb caused differential expression of 33 genes and 34 metabolites related to flavonoids in the maize root system, while 250 mg/kg of Pb caused differential expression of 34 genes and 31 metabolites. Not only did these differentially expressed genes and metabolites participate in transferase activity, anthocyanin-containing compound biosynthetic processes, metal ion binding, hydroxyl group binding, cinnamoyl transferase activity, hydroxycinnamoyl transferase activity, and flavanone 4-reductase activity but they were also significantly enriched in the flavonoid, isoflavonoid, flavone, and flavonol biosynthesis pathways. These results show that Pb is involved in the regulation of maize root growth by interfering with the biosynthesis of flavonoids in the maize root system. The results of this study will enable the elucidation of the mechanisms of the effects of lead on maize root systems.


Asunto(s)
Flavonoides , Regulación de la Expresión Génica de las Plantas , Plomo , Raíces de Plantas , Estrés Fisiológico , Transcriptoma , Zea mays , Zea mays/genética , Zea mays/metabolismo , Zea mays/efectos de los fármacos , Zea mays/crecimiento & desarrollo , Flavonoides/biosíntesis , Flavonoides/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Plomo/toxicidad , Plomo/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Estrés Fisiológico/genética , Metabolómica/métodos , Metaboloma/efectos de los fármacos , Perfilación de la Expresión Génica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Nat Nanotechnol ; 19(8): 1224-1233, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38802667

RESUMEN

Improved vaccination requires better delivery of antigens and activation of the natural immune response. Here we report a lipid nanoparticle system with the capacity to carry antigens, including mRNA and proteins, which is formed into a virus-like structure by surface decoration with spike proteins, demonstrating application against SARS-CoV-2 variants. The strategy uses S1 protein from Omicron BA.1 on the surface to deliver mRNA of S1 protein from XBB.1. The virus-like particle enables specific augmentation of mRNAs expressed in human respiratory epithelial cells and macrophages via the interaction the surface S1 protein with ACE2 or DC-SIGN receptors. Activation of macrophages and dendritic cells is demonstrated by the same receptor binding. The combination of protein and mRNA increases the antibody response in BALB/c mice compared with mRNA and protein vaccines alone. Our exploration of the mechanism of this robust immunity suggests it might involve cross-presentation to diverse subsets of dendritic cells ranging from activated innate immune signals to adaptive immune signals.


Asunto(s)
Vacunas contra la COVID-19 , Células Dendríticas , Ratones Endogámicos BALB C , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Animales , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/química , Humanos , Ratones , SARS-CoV-2/inmunología , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Células Dendríticas/inmunología , COVID-19/prevención & control , COVID-19/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Nanopartículas/química , ARN Mensajero/genética , ARN Mensajero/inmunología , Vacunación/métodos , Vacunas de ARNm/administración & dosificación , Enzima Convertidora de Angiotensina 2/metabolismo , Lectinas Tipo C/inmunología , Receptores de Superficie Celular/inmunología , Receptores de Superficie Celular/metabolismo , Moléculas de Adhesión Celular/inmunología , Femenino , Vacunas de Partículas Similares a Virus/inmunología , Vacunas de Partículas Similares a Virus/administración & dosificación , Liposomas
6.
Sci Total Environ ; 920: 171018, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38378054

RESUMEN

The mechanism through which soil microorganisms mediate carbon and nutrient cycling during mine wasteland restoration remained unknown. Using soil metagenome sequencing, we investigated the dynamic changes in soil microbial potential metabolic functions during the transition from biological soil crusts (BSC) to mixed broad-conifer forest (MBF) in a typical PbZn mine. The results showed soil microorganisms favored carbon sequestration through anaerobic and microaerobic pathways, predominantly using efficient, low-energy pathways during succession. Genes governing carbon degradation and aerobic respiration increased by 19.56 % and 24.79 %, respectively, reflecting change toward more efficient and intensive soil carbon utilization in late succession. Nitrogen-cycling genes mediated by soil microorganisms met their maximum influence during early succession (sparse grassland, SGL), leading to a respective increase of 75.29 % and 76.81 % in the net potential nitrification rate and total nitrogen content. Mantel and correlation analyses indicated that TOC, TN, Zn and Cd contents were the main factors affecting the soil carbon and phosphorus cycles. Soil AP content emerged as the primary influencer of genes associated with the nitrogen cycle. These results shed light on the dynamic shifts in microbial metabolic activities during succession, providing a genetic insight into biogeochemical cycling mechanisms and underscoring crucial factors influencing soil biogeochemical processes in mining regions.


Asunto(s)
Nitrógeno , Suelo , Suelo/química , Nitrógeno/análisis , Carbono/análisis , Fósforo , Bosques , Microbiología del Suelo
7.
J Environ Manage ; 353: 120244, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38335599

RESUMEN

On a global scale, the restoration of metal mine ecosystem functions is urgently required, and soil microorganisms play an important role in this process. Conventional studies frequently focused on the relationship between individual functions and their drivers; however, ecosystem functions are multidimensional, and considering any given function in isolation ignores the trade-offs and interconnectedness between functions, which complicates obtaining a comprehensive understanding of ecosystem functions. To elucidate the relationships between soil microorganisms and the ecosystem multifunctionality (EMF) of metal mines, this study investigated natural restoration of metal mines, evaluated the EMF, and used high-throughput sequencing to explore the bacterial and fungal communities as well as their influence on EMF. Bacterial community diversity and composition were more sensitive to mine restoration than fungal community. Bacterial diversity exhibited redundancy in improving N-P-K-S multifunctionality; however, rare bacterial taxa including Dependentiae, Spirochaetes, and WPS-2 were important for metal multifunctionality. Although no clear relationship between fungal diversity and EMF was observed, the abundance of Glomeromycota had a significant effect on the three EMF categories (N-P-K-S, carbon, and metal multifunctionality). Previous studies confirmed a pronounced positive association between microbial diversity and multifunctionality; however, the relationship between microbial diversity and multifunctionality differs among functions' categories. In contrast, the presence of critical microbial taxa exerted stronger effects on mine multifunctionality.


Asunto(s)
Ecosistema , Microbiota , Suelo , Microbiología del Suelo , Bacterias/genética , Metales
8.
J Environ Manage ; 351: 120002, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38169257

RESUMEN

Constructed wetlands (CWs) have been widely used for treating polluted water since the 1950s, with applications in over 50 countries worldwide. Most studies investigating the pollutant removal efficiency of these wetlands have focused on differences among wetland designs, operation strategies, and environmental conditions. However, there still remains a gap in understanding the variation in wetland pollutant removal efficiency over different time scales. Therefore, the main aim of the study is to address this gap by conducting a global meta-analysis to estimate the variation in nitrogen (N) and phosphorus (P) removal by wetland in short- and long-term pollutant treatment. The findings of this study indicated that the total efficiencies of N and P removal increased during short-term wetland operation but decreased during long-term operation. However, for surface flow CWs specifically, the efficiencies of N and P removal increased during short-term operation and remained stable during long-term operation. Moreover, the study discovered that wetland N removal efficiency was influenced by seasons, with an increase in spring and summer and a decrease in autumn and winter. Conversely, there was no significant seasonal effect on P removal efficiency. Additionally, high hydraulic load impaired wetland N and P removal efficiency during long-term operation. This study offers a critical review of the role of wetlands in wastewater treatment and provides valuable reference data for the design and selection of CWs types during wastewater treatment in the aspect of sustainability.


Asunto(s)
Contaminantes Ambientales , Fósforo , Eliminación de Residuos Líquidos/métodos , Humedales , Nitrógeno/análisis
9.
Sci Total Environ ; 912: 169176, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38086477

RESUMEN

The ecological risks of surfactants have been largely neglected because of their low toxicity. Multiscale studies have indicated that even if a pollutant causes no acute toxicity in a test species, it may alter interspecific interactions and community characteristics through sublethal impacts on test organisms. Therefore, we investigated the lethal and sublethal responses of the plankton species Scenedesmus quadricauda, Chlorella vulgaris, and Daphnia magna, to surfactant Tween-80. Then, high-scale responses in grazer life-history traits and stability of the D. magna-larval damselfly system were further explored. The results showed that discernible adverse effects on the growth or survival of the three plankton species were evident only at exceptionally high concentrations (≥100 mg L-1). However, 10 mg L-1 of Tween-80 notably affected the MDA concentration in grazer species, simultaneously displaying a tendency to diminish grazer's heartbeat and swimming frequency. Furthermore, Tween-80 reduced the grazer reproductive capacity and increased its predation risk by larval damselflies, which ultimately jeopardized the stability of the D. magna-larval damselfly system at much lower concentrations (10-100 fold lower) than the individual-scale responses. This study provides evidence that high-scale traits are far more sensitive to Tween-80, compared with individual-scale traits for plankton organisms, suggesting that the ecological risks of Tween-80 demand careful reassessment. SYNOPSIS: The concentration of Tween-80 needed to induce changes in community characteristics is markedly lower than that needed to produce individual-scale consequences. Thus, high-scale analyses have broad implications for understanding the hazardous effects of surfactants compared with an individual-scale analysis.


Asunto(s)
Chlorella vulgaris , Scenedesmus , Contaminantes Químicos del Agua , Animales , Plancton , Tensoactivos/toxicidad , Polisorbatos/toxicidad , Daphnia , Contaminantes Químicos del Agua/toxicidad
10.
Environ Sci Pollut Res Int ; 31(2): 1941-1953, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38044401

RESUMEN

The combination of biochar and bacteria is a promising strategy for the remediation of Cd-polluted soils. However, the synergistic mechanisms of biochar and bacteria for Cd immobilization remain unclear. In this study, the experiments were conducted to evaluate the effects of the combination of biochar and Pseudomonas sp. AN-B15, on Cd immobilization, soil enzyme activity, and soil microbiome. The results showed that biochar could directly reduce the motility of Cd through adsorption and formation of CdCO3 precipitates, thereby protecting bacteria from Cd toxicity in the solution. In addition, bacterial growth further induces the formation of CdCO3 and CdS and enhances Cd adsorption by bacterial cells, resulting in a higher Cd removal rate. Thus, bacterial inoculation significantly enhances Cd removal in the presence of biochar in the solution. Moreover, soil incubation experiments showed that bacteria-loaded biochar significantly reduced soil exchangeable Cd in comparison with other treatments by impacting soil microbiome. In particular, bacteria-loaded biochar increased the relative abundance of Bacillus, Lysobacter, and Pontibacter, causing an increase in pH, urease, and arylsulfatase, thereby passivating soil exchangeable Cd and improving soil environmental quality in the natural alkaline Cd-contaminated soil. Overall, this study provides a systematic understanding of the synergistic mechanisms of biochar and bacteria for Cd immobilization in soil and new insights into the selection of functional strain for the efficient remediation of the contaminated environments by bacterial biochar composite.


Asunto(s)
Cadmio , Contaminantes del Suelo , Cadmio/análisis , Contaminantes del Suelo/análisis , Carbón Orgánico , Suelo , Bacterias
11.
Ecotoxicol Environ Saf ; 266: 115527, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37806135

RESUMEN

Understanding Cd-resistant bacterial cadmium (Cd) resistance systems is crucial for improving microremediation in Cd-contaminated environments. However, these mechanisms are not fully understood in plant-associated bacteria. In the present study, we investigated the mechanisms underlying Cd sequestration and resistance in the strain AN-B15. These results showed that extracellular Cd sequestration by complexation in strain AN-B15 was primarily responsible for the removal of Cd from the solution. Transcriptome analyses have shown that the mechanisms of Cd resistance at the transcriptional level involve collaborative processes involving multiple metabolic pathways. The AN-B15 strain upregulated the expression of genes related to exopolymeric substance synthesis, metal transport, Fe-S cluster biogenesis, iron recruitment, reactive oxygen species oxidative stress defense, and DNA and protein repair to resist Cd-induced stress. Furthermore, inoculation with AN-B15 alleviated Cd-induced toxicity and reduced Cd uptake in the shoots of wheat seedlings, indicating its potential for remediation. Overall, the results improve our understanding of the mechanisms involved in Cd resistance in bacteria and thus have important implications for improving microremediation.


Asunto(s)
Cadmio , Contaminantes del Suelo , Cadmio/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo , Plantones/metabolismo , Hierro/metabolismo , Estrés Oxidativo , Bacterias/metabolismo , Contaminantes del Suelo/análisis , Raíces de Plantas/metabolismo
12.
Sci Total Environ ; 904: 166871, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37683844

RESUMEN

The drivers and mechanisms underlying succession and the spontaneous formation of plant communities in mining wasteland remain largely unknown. This study investigated the use of nature-based restoration to facilitate the recovery of viable plant communities in mining wasteland. It was found that scientific analyses of spontaneously formed plant communities in abandoned mining areas can provide insights for nature-based restoration. A chronosequence ("space for time") approach was used to establish sites representing three successional periods with six successional stages, and 90 quadrats were constructed to investigate changes in plant species and functional diversity during succession in abandoned PbZn mining areas. A total of 140 soil samples were collected to identify changes in soil properties, including plant nutrient and heavy metal concentrations. Then, this paper used structural equation models to analyze the mechanisms that drive succession. It was found that the functional diversity of plant communities fluctuated substantially during succession. Species had similar functional traits in early and mid-succession, but traits tended to diverge during late succession. Soil bulk density and soil organic matter gradually increased during succession. Total nitrogen (N), pH, and soil Zn concentrations first increased and then decreased during succession. Concentrations of Mn and Cd gradually decreased during succession. During early succession, soil organic matter was the key factor driving plant colonization and succession. During mid-succession, soil Zn functioned as an environmental filter factor limiting the rates of succession in mining wasteland communities. During late succession, soil bulk density and competition for nutrient resources contributed to more balanced differentiation among plant species. This thesis proposed that a nature-based strategy for the stabilization of abandoned mining lands could facilitate effective plant community restoration that promotes ecosystem services and functioning.


Asunto(s)
Ecosistema , Metales Pesados , China , Metales Pesados/análisis , Plantas , Suelo/química
13.
Chemosphere ; 340: 139770, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37562505

RESUMEN

Globally, reducing carbon emissions and mitigating soil heavy metal pollution pose pressing challenges. We evaluated the effects of lead (Pb) and cadmium (Cd) contamination in the field over 20 years. The five treatment groups featured Pb concentrations of 40 and 250 mg/kg, Cd concentrations of 10 and 60 mg/kg, and a combination of Pb and Cd (60 and 20 mg/kg, respectively); we also included a pollution-free control group. After 20 years, soil pH decreased notably in all treatments, particularly by 1.02 in Cd10-treated soil. In addition to the increase of SOC in Cd10 and unchanged in Pb40 treatment, the SOC was reduced by 9.62%-12.98% under the other treatments. The α diversities of bacteria and fungi were significantly changed by Cd10 pollution (both p < 0.05) and the microbial community structure changed significantly. However, there were no significant changes in bacterial and fungal communities under other treatments. Cd10 pollution reduced the numbers of Ascomycota and Basidiomycota fungi, and enhanced SOC accumulation. Compared to the control, long-term heavy Cd, Pb, and Pb-Cd composite pollution caused SOC loss by increasing Basidiomycota which promoting carbon degradation, and decreasing Proteobacteria which promoting carbon fixation via the Krebs cycle. Our findings demonstrate that heavy metal pollution mediates Carbon-cycling microorganisms and genes, impacting SOC storage.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Cadmio/análisis , Carbono/metabolismo , Suelo/química , Plomo/metabolismo , Metales Pesados/análisis , Hongos , Contaminantes del Suelo/análisis
14.
Int J Mol Sci ; 24(11)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37298252

RESUMEN

Stomata are one of the important structures for plants to alleviate metal stress and improve plant resistance. Therefore, a study on the effects and mechanisms of heavy metal toxicity to stomata is indispensable in clarifying the adaptation mechanism of plants to heavy metals. With the rapid pace of industrialization and urbanization, heavy metal pollution has been an environmental issue of global concern. Stomata, a special physiological structure of plants, play an important role in maintaining plant physiological and ecological functions. Recent studies have shown that heavy metals can affect the structure and function of stomata, leading to changes in plant physiology and ecology. However, although the scientific community has accumulated some data on the effects of heavy metals on plant stomata, the systematic understanding of the effects of heavy metals on plant stomata remains limited. Therefore, in this review, we present the sources and migration pathways of heavy metals in plant stomata, analyze systematically the physiological and ecological responses of stomata on heavy metal exposure, and summarize the current mechanisms of heavy metal toxicity on stomata. Finally, the future research perspectives of the effects of heavy metals on plant stomata are identified. This paper can serve as a reference for the ecological assessment of heavy metals and the protection of plant resources.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Metales Pesados/metabolismo , Plantas/metabolismo , Contaminación Ambiental , Fenómenos Fisiológicos de las Plantas , Contaminantes del Suelo/metabolismo , Suelo/química
15.
Int Immunopharmacol ; 117: 109902, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36827922

RESUMEN

Tumor necrosis factor-α (TNFα) has emerged as a pivotal effector critically correlated with disease severity in acute lung injury (ALI). Because both the excessive activation of epidermal growth factor receptor (EGFR) and tumor necrosis factor receptor 1 (TNFR1) in sepsis-induced vasculitis are markedly diminished through EGFR tyrosine kinase inhibitor, a specific mechanism must exist to modulate TNFR1 cellular fates regulated by EGFR. Here, we demonstrated that EGFR, a specific binding partner of TNFR1, exhibited an increased NF-κB/MAPK-mediated inflammation that was governed by enhanced recruitment of TNFR-associated factor 2 (TRAF2) to TNFR1 complex I in endothelial cell (EC). Moreover, EGFR activation triggered a remarkable increase in the phosphorylation of receptor-interacting protein 1 (RIP1) and its binding with receptor-interacting protein 3 (RIP3) which led to enhanced frequency of necroptosis in complex IIb. Inhibiting the kinase of EGFR disrupted the formation of complex I and complex IIb and prevents EC from NF-κB/MAPK-mediated inflammation and RIP3-dependent necroptosis. Consistently, pharmacological inhibition of EGFR can limit the destructive effects of neutrophils activation and the hyperpermeability of lung vascular in hyperinflammation period. Collectively, we have identified EC-EGFR as a modulator of TNFR1-mediated inflammation and RIP3-dependent necroptosis, providing a possible explanation for the immunological basis of anti-EGFR therapy in sepsis-induced ALI.


Asunto(s)
Lesión Pulmonar Aguda , FN-kappa B , Humanos , FN-kappa B/metabolismo , Necrosis/patología , Apoptosis , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Necroptosis , Factor de Necrosis Tumoral alfa/metabolismo , Inflamación , Células Endoteliales/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Receptores ErbB/metabolismo
16.
Ecotoxicol Environ Saf ; 250: 114498, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36608568

RESUMEN

The understanding of bacterial resistance to hexavalent chromium [Cr(VI)] are crucial for the enhancement of Cr(VI)-polluted soil bioremediation. However, the mechanisms related to plant-associated bacteria remain largely unclear. In this study, we investigate the resistance mechanisms and remediation potential of Cr(VI) in a plant-associated strain, AN-B15. The results manifested that AN-B15 efficiently reduced Cr(VI) to soluble organo-Cr(III). Specifically, 84.3 % and 56.5 % of Cr(VI) was removed after 48 h in strain-inoculated solutions supplemented with 10 and 20 mg/L Cr(VI) concentrations, respectively. Transcriptome analyses revealed that multiple metabolic systems are responsible for Cr(VI) resistance at the transcriptional level. In response to Cr(VI) exposure, strain AN-B15 up-regulated the genes involved in central metabolism, providing the reducing power by which enzymes (ChrR and azoR) transformed Cr(VI) to Cr(III) in the cytoplasm. Genes involved in the alleviation of oxidative stress and DNA repair were significantly up-regulated to neutralize Cr(VI)-induced toxicity. Additionally, genes involved in organosulfur metabolism and certain ion transporters were up-regulated to counteract the starvation of sulfur, molybdate, iron, and manganese induced by Cr(VI) stress. Furthermore, a hydroponic culture experiment showed that toxicity and uptake of Cr(VI) by plants under Cr(VI) stress were reduced by strain AN-B15. Specifically, strain AN-B15 inoculation increased the fresh weights of the wheat root and shoot by 55.5 % and 18.8 %, respectively, under Cr(VI) stress (5 mg/L). The elucidation of bacterial resistance to Cr(VI) has an important implication for exploiting microorganism for the effective remediation of Cr(VI)-polluted soils.


Asunto(s)
Cromo , Pseudomonas , Pseudomonas/genética , Pseudomonas/metabolismo , Cromo/análisis , Bacterias/metabolismo , Hierro/metabolismo , Biodegradación Ambiental
17.
Ecotoxicol Environ Saf ; 249: 114433, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38321655

RESUMEN

The ubiquitous presence of microplastics in aquatic environments is considered a global threat to aquatic organisms. Species of the genus Daphnia provide an important link between aquatic primary producers and consumers of higher trophic levels; furthermore, these organisms exhibit high sensitivity to various environmental pollutants. Hence, the biological effects of microplastics on Daphnia species are well documented. This paper reviews the latest research regarding the ecotoxicological effects of microplastics on Daphnia, including the: 1) responses of individual, population, and community attributes of Daphnia to microplastics; 2) influence of the physical and chemical properties of microplastics; and 3) joint toxicity of microplastics and other pollutants on responses of Daphnia. Our literature review found that the published literature does not provide sufficient evidence to reveal the risks of microplastics at the population and community levels. Furthermore, we emphasized that high-level analysis has more general implications for understanding how individual-level research can reveal the ecological hazards of microplastics on Daphnia. Based on this review, we suggest avenues for future research, including microplastic toxicology studies based on both omics-based and community-level methods, especially the latter.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Microplásticos/toxicidad , Plásticos/toxicidad , Daphnia , Ecotoxicología , Contaminantes Químicos del Agua/toxicidad
18.
Ecol Evol ; 12(5): e8882, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35509610

RESUMEN

The mechanisms governing community assembly is fundamental to ecological restoration and clarification of the assembly processes associated with severe disturbances (characterized by no biological legacy and serious environmental problems) is essential. However, a systematic understanding of community assembly in the context of severe anthropogenic disturbance remains lacking. Here, we explored community assembly processes after metal mining, which is considered to be a highly destructive activity to provide insight into the assembly rules associated with severe anthropogenic disturbance. Using a chronosequence approach, we selected vegetation patches representing different successional stages and collected data on eight plant functional traits from each stage. The traits were classified as establishment and regenerative traits. Based on these traits, null models were constructed to identify the processes driving assembly at various successional stages. Comparison of our observations with the null models indicated that establishment and regenerative traits converged in the primary stage of succession. As succession progressed, establishment traits shifted to neutral assembly, whereas regeneration traits alternately converged and diverged. The observed establishment traits were equal to expected values, whereas regenerative traits diverged significantly after more than 20 years of succession. Furthermore, the available Cr content was linked strongly to species' ecological strategies. In the initial stages of vegetation succession in an abandoned metal mine, the plant community was mainly affected by the available metal content and dispersal limitation. It was probably further affected by strong interspecific interaction after the environmental conditions had improved, and stochastic processes became dominant during the stage with a successional age of more than 20 years.

19.
Sci Total Environ ; 806(Pt 2): 150626, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34597554

RESUMEN

Mining is the most destructive human activity towards ecosystems through changing the terrain, substrate properties, and vegetation community structure. Vegetation succession, the theoretical basis of restoration, is influenced by site conditions and anthropogenic intervention. In order to provide general practical applications for mine restoration, it is critical to identify the optimal intervention that promotes succession, and the influence of climates. Here, we hypothesized that high-intervention contributes to positive characteristics and more successful succession, while increasing climatic severity presents negative characteristics and succession is hard to succeed. In this study, we collected 55 global studies (n = 804) on the vegetation succession of abandoned metal mines, and evaluated the ecological characteristics and successional trends under spontaneous succession and anthropogenic intervention conditions by conducting meta-analyses. Furthermore, we considered factors that may affect the vegetation succession after closing mines, including geological conditions, mining area (area of degraded land in mine field) and mining time (duration of mining operations). Species richness and evenness increased with the age of succession under low- and non- intervention conditions, while coverage increased under high-intervention, and species diversity decreased significantly with increasing mining time in cold areas. There were significant differences in succession trends under different climate types. The vegetation structure was more likely to develop towards the target vegetation in megathermal and mesothermal than in microthermal regions. We contend that a low level of intervention can help succession, while high-intervention will not. Vegetation succession can be achieved more easily with less climatic severity, and the reduction of large-scale mining processes (area and time) can increase vegetation evenness, especially for continental or microthermal regions.


Asunto(s)
Ecosistema , Suelo , Humanos , Metales , Minería
20.
J. pediatr. (Rio J.) ; 97(4): 409-413, July-Aug. 2021. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1287037

RESUMEN

Abstract Objective This study aimed to identify the predictors and threshold of failure in neonatal acute respiratory distress syndrome. Methods Newborns with severe acute respiratory distress syndrome aged 0-28 days and gestational age ≥36 weeks were included in the study if their cases were managed with non-extra corporal membrane oxygenation treatments. Patients were divided into two groups according to whether they died before discharge. Predictors of non-extra corporal membrane oxygenation treatment failure were sought, and the threshold of predictors was calculated. Results A total of 103 patients were included in the study. A total of 77 (74.8%) survived hospitalization and were discharged, whereas 26 (25.2%) died. Receiver operating characteristic analysis of oxygen index, pH, base excess, and combinations of these indicators demonstrated the advantage of the combination of oxygen index and base excess over the others variables regarding their predictive ability. The area under the curve for the combination of oxygen index and base excess was 0.865. When the cut-off values of oxygen index and base excess were 30.0 and −7.4, respectively, the sensitivity and specificity for predicting death were 77.0% and 84.0%, respectively. The model with base excess added a net reclassification improvement of 0.090 to the model without base excess. Conclusion The combination of oxygen index and base excess can be used as a predictor of outcomes in neonates receiving non-extra corporal membrane oxygenation treatment for acute respiratory distress syndrome. In neonates with acute respiratory distress syndrome, if oxygen index >30 and base excess <−7.4, non-extra corporal membrane oxygenation therapy is likely to lead to death.


Asunto(s)
Humanos , Recién Nacido , Lactante , Síndrome de Dificultad Respiratoria del Recién Nacido/terapia , Síndrome de Dificultad Respiratoria del Recién Nacido , Insuficiencia Respiratoria , Oxígeno , Terapia por Inhalación de Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA