Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
Environ Int ; 191: 108957, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39153387

RESUMEN

Endocrine-disrupting chemicals (EDCs) exhibited the detriment in female reproductive health. Our objective was to investigate the individual and mixture effects of EDCs present in follicular fluid, the environment in which oocytes grow and develop, on early reproductive outcomes. We recruited 188 women seeking reproduction examination from the Study of Exposure and Reproductive Health (SEARCH) cohort between December 2020 and November 2021. We assessed the concentrations of 7 categories of 64 EDCs in follicular fluid, and measured early reproductive outcomes, including retrieved oocytes, mature oocytes, normal fertilized oocytes, and high-quality embryos. In this study Monomethyl phthalate (MMP) (2.17 ng/ml) were the compounds found in the highest median concentrations in follicular fluid. After adjusting for multiple testing, multivariate regression showed that multiple EDCs were significantly negatively associated with early assisted reproduction outcomes. For example, MMP showed a significant negative correlation with the number of high quality embryos (ß: -0.1, 95 % CI: -0.15, -0.04). Specifically, eight types of EDCs were significantly negatively associated with four early assisted reproductive outcomes (ß range: -0.2 âˆ¼ -0.03). In the mixed exposure model, we found that mixtures of EDC were significantly negatively correlated with all four outcomes. In the quantile g-computation (QGCOMP) model, for each interquartile range increase in the concentration of EDC mixtures, the number of oocytes retrieved, mature oocytes, normally fertilized oocytes, and high-quality embryos decreased by 0.46, 0.52, 0.77, and 1.2, respectively. Moreover, we identified that phthalates (PAEs) predominantly contributed to the negative effects. Future research should validate our findings.


Asunto(s)
Disruptores Endocrinos , Líquido Folicular , Oocitos , Líquido Folicular/química , Líquido Folicular/metabolismo , Femenino , Oocitos/efectos de los fármacos , Humanos , Adulto , Fertilización/efectos de los fármacos , Ácidos Ftálicos
2.
Phytomedicine ; 134: 155992, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39216300

RESUMEN

BACKGROUND: Polygoni Cuspidati Rhizoma et Radix (Huzhang in Chinese), refers to the root and rhizome of Polygonum cuspidatum Sieb. et Zucc. Huzhang is commonly used in clinical practice for the prevention and treatment of diabetes and its complications, but its active components and regulatory mechanisms have not yet been thoroughly analyzed. PURPOSE: The network pharmacology combined with multi-omics analysis will be employed to dissect the substance basis and action mechanism of Huzhang in exerting its anti-diabetic activity. METHODS: This study employed phenotypic indicators for baseline assessment, followed by integrated analysis using network pharmacology, metabolomics, transcriptomics, and qPCR technology to elucidate the active components and pharmacological mechanisms of Huzhang. RESULTS: The analysis of network pharmacology revealed that polydatin is a potential active component responsible for the anti-T2DM pharmacological effects of Huzhang. In vivo experimental results demonstrated that polydatin significantly regulates blood glucose, lipid levels, liver function, and liver pathological damage in diabetic rats. Analysis results from transcriptomics, metabolomics, and qPCR validation showed that polydatin comprehensively regulates glucose and lipid metabolism in T2DM by modulating bile acid metabolism, fatty acid oxidation, and lipogenesis. CONCLUSION: Polydatin is a key component of Huzhang in treating T2DM, and its regulatory mechanisms are diverse, indicating significant development potential.


Asunto(s)
Diabetes Mellitus Experimental , Medicamentos Herbarios Chinos , Fallopia japonica , Glucósidos , Hígado , Farmacología en Red , Ratas Sprague-Dawley , Rizoma , Estilbenos , Animales , Estilbenos/farmacología , Glucósidos/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Fallopia japonica/química , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Rizoma/química , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Ratas , Metabolismo de los Lípidos/efectos de los fármacos , Hipoglucemiantes/farmacología , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Raíces de Plantas/química , Metabolómica , Multiómica
3.
J Ethnopharmacol ; 335: 118662, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39117022

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Salvia miltiorrhiza Bge. (SMB) is an herbal medicine extensively used for improving metabolic disorders, including Nonalcoholic fatty liver disease (NAFLD). However, the potential material basis and working mechanism still remained to be elucidated. AIM OF THE STUDY: To find potential ingredients for therapy of NAFLD by high content screening and further verify the efficacy on restoring hepatic steatosis and insulin resistance, and clarify the potential working mechanism. MATERIALS AND METHODS: The mouse transcription factor EB (Tfeb) in preadipocytes was knocked out by CRISPR-Cas9 gene editing. High content screening of TFEB nuclear translocation was performed to identify TFEB activators. The effect of candidate compounds on reducing lipid accumulation was evaluated using Caenorhabditis elegans (C. elegans). Then the role of Salvia miltiorrhiza extract (SMB) containing Tanshinone IIA and the derivatives were further investigated on high-fat diet (HFD) fed mice. RNA-seq was performed to explore potential molecular mechanism of SMB. Finally, the gut microbiota diversity was evaluated using 16S rRNA sequencing to investigate the protective role of SMB on regulating gut microbiota homeostasis. RESULTS: Knockout of Tfeb led to excessive lipid accumulation in adipocytes while expression of TFEB homolog HLH-30 in C. elegans (MAH240) attenuated lipid deposition. Screening of TFEB activators identified multiple candidates from Salvia miltiorrhiza, all of them markedly induced lysosome biogenesis in HepG2 cells. One of the candidate compounds Tanshinone IIA significantly decreased lipid droplet deposition in HFD fed C. elegans. Administration of SMB on C57BL/6J mice via gastric irrigation at the dose of 15 g/kg/d markedly alleviated hepatic steatosis, restored serum lipid profile, and glucose tolerance. RNA-seq showed that gene expression profile was altered and the genes related to lipid metabolism were restored. The disordered microbiome was remodeled by SMB, Firmicutes and Actinobacteriotawere notably reduced, Bacteroidota and Verrucomicrobiota were significantly increased. CONCLUSION: Taken together, the observations presented here help address the question concerning what were the main active ingredients in SMB for alleviating NAFLD, and established that targeting TFEB was key molecular basis for the efficacy of SMB.


Asunto(s)
Abietanos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Caenorhabditis elegans , Resistencia a la Insulina , Ratones Endogámicos C57BL , Salvia miltiorrhiza , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Caenorhabditis elegans/efectos de los fármacos , Abietanos/farmacología , Ratones , Masculino , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Microbioma Gastrointestinal/efectos de los fármacos , Extractos Vegetales/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Dieta Alta en Grasa , Células 3T3-L1
4.
J Control Release ; 373: 929-951, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39097195

RESUMEN

Bioorthogonal nanozymes have emerged as a potent tool in biomedicine due to their unique ability to perform enzymatic reactions that do not interfere with native biochemical processes. The integration of stimuli-responsive mechanisms into these nanozymes has further expanded their potential, allowing for controlled activation and targeted delivery. As such, intelligent bioorthogonal nanozymes have received more and more attention in developing therapeutic approaches. This review provides a comprehensive overview of the recent advances in the development and application of stimuli-responsive bioorthogonal nanozymes. By summarizing the design outlines for anchoring bioorthogonal nanozymes with stimuli-responsive capability, this review seeks to offer valuable insights and guidance for the rational design of these remarkable materials. This review highlights the significant progress made in this exciting field with different types of stimuli and the various applications. Additionally, it also examines the current challenges and limitations in the design, synthesis, and application of these systems, and proposes potential solutions and research directions. This review aims to stimulate further research toward the development of more efficient and versatile stimuli-responsive bioorthogonal nanozymes for biomedical applications.


Asunto(s)
Nanoestructuras , Catálisis , Humanos , Animales , Nanoestructuras/química , Sistemas de Liberación de Medicamentos , Enzimas/química , Enzimas/metabolismo
5.
J Asian Nat Prod Res ; : 1-19, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39150175

RESUMEN

Polygonati rhizoma (Huangjing in Chinese) is a common clinical tonic with the traditional effects of tonifying Qi, nourishing Yin. However, the lack of precise control of processing parameters has led to the uneven quality of processed Huangjing. A prediction model using the CRITIC method optimizes processing by correlating method, component contents, and biological activity, ensuring consistent quality and efficacy.

6.
AME Case Rep ; 8: 63, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39091541

RESUMEN

Background: Solitary rectal ulcer syndrome (SRUS) is a rare chronic rectal lesion with potential for malignant transformation, although cases of rapid progression to mucinous adenocarcinoma are infrequent. This case report highlights such an instance in a 29-year-old male patient, emphasizing the importance of vigilance among clinicians for detecting canceration in SRUS patients. Case Description: The patient presented with recurrent constipation and anal discomfort, initially diagnosed with SRUS based on colonoscopy and pathological examination. Despite long-term mesalazine treatment, symptoms persisted, and subsequent evaluation revealed the development of mucinous adenocarcinoma within a short period. Surgical resection, combined with adjuvant FOLFOX chemotherapy, effectively controlled cancer progression. Immunohistochemical analysis showed positive expression of MLH1(+), MSH2(+), MSH6(+), PMS2(+), and HER2(+), providing molecular insights into SRUS-associated mucinous adenocarcinoma. Conclusions: This case underscores the need for increased awareness among clinicians regarding the potential for cancerous transformation in SRUS patients. Early detection and intervention are crucial for improving outcomes in SRUS-associated malignancies. Furthermore, this case adds to existing literature by presenting a rare instance of SRUS progressing rapidly to mucinous adenocarcinoma, highlighting the significance of regular monitoring and timely intervention in such cases. Further research is warranted to elucidate underlying mechanisms and risk factors, guiding future clinical practice and treatment strategies.

7.
Medicine (Baltimore) ; 103(26): e38700, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38941382

RESUMEN

This study aims to critically reassess existing systematic reviews (SR) on Traditional Chinese Exercises (TCE) for treating Chronic Obstructive Pulmonary Disease (COPD). The primary objectives include synthesizing available evidence, evaluating the methodological quality of reviews and overall evidence, and providing comprehensive insights into the effectiveness of different TCE types in managing COPD. Sinomed, CNKI, VIP, Wanfang, PubMed, Cochrane Library, and Web of Science were searched from inception to April 2023 for SR literature on the treatment of COPD with TCE. The extracted data from the included SRs encompassed various aspects such as general information, study population, intervention measures, meta-analysis results, and conclusions. The methodological quality of the included SRs was assessed using the AMSTAR II tool. Additionally, the GRADE tool was used to determine the evidence level of outcome indicators. This study included 17 SRs and 4 types of TCE. The CCA was 0.041, indicating a slight overlap between the primary studies. Notably, one study was rated as low quality on the AMSTAR II scale, while the rest were classified as critically low quality. The results from the GRADE evaluation revealed 26 pieces of very low-quality evidence, 55 pieces of low-quality evidence, and 17 pieces of moderate-quality evidence. The moderate-quality evidence suggests that Liuzijue effectively improves TCM syndrome scores in patients with COPD. Additionally, low-quality evidence suggests that Liuzijue improves patients' lung function (FEV1, FVC) and quality of life (CAT, MRC/mMRC). Similarly, low-quality evidence suggests that Baduanjin can improve patients' lung function (FEV1%, FVC) and quality of life (SGRQ). Low-quality evidence also suggests that Health Qigong can significantly improve patients' exercise endurance (6MWD). No SR reported TCE-related adverse reactions. TCE interventions are effective and safe in the treatment of COPD. Different types of TCE have varying effects on outcomes in COPD patients. However, these findings are limited by the generally low methodological and evidence quality of the included SRs. Therefore, it is strongly recommended to improve study designs to obtain higher-quality clinical evidence and to strictly follow SR protocols.


Asunto(s)
Medicina Tradicional China , Enfermedad Pulmonar Obstructiva Crónica , Revisiones Sistemáticas como Asunto , Humanos , Pueblos del Este de Asia , Terapia por Ejercicio/métodos , Medicina Tradicional China/métodos , Enfermedad Pulmonar Obstructiva Crónica/terapia , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Enfermedad Pulmonar Obstructiva Crónica/rehabilitación , Qigong/métodos , Calidad de Vida
8.
Ecotoxicol Environ Saf ; 280: 116525, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38852468

RESUMEN

Air pollution is widely acknowledged as a significant risk factor for human health, especially reproductive health. Nevertheless, many studies have disregarded the potentially mixed effects of air pollutants on reproductive outcomes. We performed a retrospective cohort study involving 8048 women with 9445 cycles undergoing In Vitro Fertilization (IVF) and Intracytoplasmic Sperm Injection (ICSI) in China, from 2017 to 2021. A land-use random forest model was applied to estimate daily residential exposure to air pollutants, including sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), ozone (O3), and fine particulate matter (PM2.5). Individual and joint associations between air pollutants and oocyte-related outcomes of ART were evaluated. In 90 days prior to oocyte pick-up to oocyte pick-up (period A), NO2, O3 and CO was negatively associated with total oocyte yield. In the 90 days prior to oocyte pick-up to start of gonadotropin medication (Gn start, period B), there was a negative dose-dependent association of exposure to five air pollutants with total oocyte yield and mature oocyte yield. In Qgcomp analysis, increasing the multiple air pollutants mixtures by one quartile was related to reducing the number of oocyte pick-ups by -2.00 % (95 %CI: -2.78 %, -1.22 %) in period A, -2.62 % (95 %CI: -3.40 %, -1.84 %) in period B, and -0.98 % (95 %CI: -1.75 %, -0.21 %) in period C. During period B, a 1-unit increase in the WQS index of multiple air pollutants exposure was associated with fewer number of total oocyte (-1.27 %, 95 %CI: -2.16 %, -0.36 %) and mature oocyte (-1.42 %, 95 %CI: -2.41 %, -0.43 %). O3 and NO2 were major contributors with adverse effects on the mixed associations. Additionally, period B appears to be the susceptible window. Our study implies that exposure to air pollution adversely affects oocyte-related outcomes, which raises concerns about the potential adverse impact of air pollution on women's reproductive health.


Asunto(s)
Contaminantes Atmosféricos , Oocitos , Femenino , Humanos , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Estudios Retrospectivos , Oocitos/efectos de los fármacos , Adulto , China , Técnicas Reproductivas Asistidas , Contaminación del Aire/efectos adversos , Ozono , Material Particulado/toxicidad , Material Particulado/análisis , Exposición a Riesgos Ambientales/efectos adversos , Fertilización In Vitro , Estudios de Cohortes , Dióxido de Nitrógeno/análisis
9.
Artículo en Inglés | MEDLINE | ID: mdl-38706357

RESUMEN

BACKGROUND: Bone metabolic diseases are serious health issues worldwide. Angelica sinensis (AS) is traditionally used in Chinese medicine for treating bone metabolism diseases clinically. However, the mechanism of AS in regulating bone metabolism remains uncertain. OBJECTIVE: The current investigation was structured to elucidate the potential mechanisms of AS for modulating bone metabolism. METHODS: Firstly, targets of AS regulating bone metabolism were collected by network pharmacology. Then, the transcriptional regulation of RUNX2 was enriched as one of the key pathways for AS to regulate bone metabolism, constructing its metabolic network. Secondly, combining molecular docking, network efficiency, and network flux analyses, we conducted a quantitative evaluation of the metabolic network to reveal the potential mechanisms and components of AS regulating bone metabolism. Finally, we explored the effect of AS on the differentiation of osteoclasts from M-CSF and RANKL-induced RAW264.7 cells, as well as its impact on the osteogenic induction of MC3T3-E1 cells. We verified the mechanism and key targets of AS on bone metabolism using qRT-PCR. Furthermore, the key component was preliminarily validated through molecular dynamics simulation. RESULTS: Quantitative metabolic network of the transcriptional regulation of RUNX2 was constructed to illustrate the potential mechanism of AS for regulating bone metabolism, indicating that ferulic acid may be a pharmacological component of AS that interferes with bone metabolism. AS suppressed osteoclast differentiation in M-CSF and RANKL-induced RAW264.7 cells and reversed the expressions of osteoclastic differentiation markers, including RUNX2 and SRC. Additionally, AS induced osteogenic generation in MC3T3-E1 cells and reversed the expressions of markers associated with osteoblastic generation, such as RUNX2 and HDAC4. Molecular dynamics simulation displayed a strong binding affinity among ferulic acid, HDAC4 and SRC. CONCLUSION: This study reveals a systematic perspective on the intervention bone mechanism of AS by transcriptive regulation by RUNX2, guiding the clinical use of AS in treating diseases of the skeletal system.

11.
Cell Death Discov ; 10(1): 228, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740771

RESUMEN

Chemotherapy is an important therapuetic strategy for colorectal cancer (CRC), but chemoresistance severely affects its efficacy, and the underlying mechanism has not been fully elucidated. Increasing evidence suggests that lipid peroxidation imbalance-mediated ferroptosis is closely associated with chemoresistance. Hence, targeting ferroptosis pathways or modulating the tolerance to oxidative stress might be an effective strategy to reverse tumor chemoresistance. HtrA serine protease 1 (HTRA1) was screened out as a CRC progression- and chemoresistance-related gene. It is highly expressed in CRC cells and negatively correlated with the prognosis of CRC patients. Gain- and loss-of-function analyses demonstrated a stimulatory role of HTRA1 on the proliferation of CRC cells. The enrichment analysis of HTRA1-interacting proteins indicated the involvement of ferroptosis in the HTRA1-mediated chemoresistance. Moreover, electron microscope analysis, as well as the ROS and MDA levels in CRC cells also confirmed the effect of HTRA1 on ferroptosis. We also verified that HTRA1 could interact with SLC7A11 through its Kazal structural domain and up-regulate the expression of SLC7A11, which in turn inhibited the ferroptosis and leaded to the chemoresistance of CRC cells to 5-FU/L-OHP. Hence, we propose that HTRA1 may be a potential therapeutic target and a prognostic indicator in CRC.

12.
Front Microbiol ; 15: 1307966, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38666262

RESUMEN

Lanzhou lily (Lilium davidii var. willmottiae) is an exclusive sweet lily variety indigenous to China, which is susceptible to bulbous rot caused by fungal infection during storage. This experiment tests the pathogenicity of the pure culture isolated from the diseased tissue was confirmed in accordance with Koch's postulates, and the pathomycetes were identified based on their morphological and molecular characteristics. Furthermore, the biological characteristics of the pathogens were investigated, followed by an evaluation of the antifungal effects of three plant essential oils against them. The results showed that two strains of fungi were isolated from Lanzhou lily rot, which were identified as Fusarium oxysporum Schl. and Aspergillus sydowii (Bain. Et sart.). In addition, the pathogenicity of these two strains of fungi was demonstrated that only F. oxysporum induced rot with similar symptoms during the post-harvest storage period. The biological characteristics of F. oxysporum indicated the potato maltose agar and lily dextrose agar were identified as the most suitable media. Sucrose was determined to be the optimal carbon source, while ammonium nitrate was found to be the best nitrogen source for the growth of F. oxysporum. Mycelial growth and sporulation of F. oxysporum occurred at an optimum pH value of 6. Total darkness facilitated mycelial growth and conidial germination. The ideal temperature for growth was found to be 28°C, while relative humidity did not significantly impact mycelial growth; however, a relative humidity of 55% was most favorable for spore production. Among the three essential oils tested, cinnamon essential oil displayed superior antifungal efficacy against F. oxysporum, whereas angelica essential oil and tea tree essential oil also exhibited moderate inhibitory effects against this pathogen. This research provides valuable theoretical insights for disease control during the storage and transportation of Lanzhou lily.

13.
Biol Trace Elem Res ; 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38492120

RESUMEN

Exposure to metal mixtures compromises the immune system, with the complement system connecting innate and adaptive immunity. Herein, we sought to explore the relationships between blood cell metal mixtures and the third and fourth components of serum complement (C3, C4). A total of 538 participants were recruited in November 2017, and 289 participants were followed up in November 2021. We conducted a cross-sectional analysis at baseline and a longitudinal analysis over 4 years. Least Absolute Shrinkage and Selection Operator (LASSO) was employed to identify the primary metals related to serum C3, C4; generalized linear model (GLM) was further used to evaluate the cross-sectional associations of the selected metals and serum C3, C4. Furthermore, participants were categorized into three groups according to the percentage change in metal concentrations over 4 years. GLM was performed to assess the associations between changes in metal concentrations and changes in serum C3, C4 levels. At baseline, each 1-unit increase in log10-transformed in magnesium, manganese, copper, rubidium, and lead was significantly associated with a change in serum C3 of 0.226 (95% CI: 0.146, 0.307), 0.055 (95% CI: 0.022, 0.088), 0.113 (95% CI: 0.019, 0.206), - 0.173 (95% CI: - 0.262, - 0.083), and - 0.020 (95% CI: - 0.039, - 0.001), respectively. Longitudinally, decreased copper concentrations were negatively associated with an increment in serum C3 levels, while decreased lead concentrations were positively associated with an increment in serum C3 levels. However, no metal was found to be primarily associated with serum C4 in LASSO, so we did not further explore the relationship between them. Our research indicates that copper and lead may affect complement system homeostasis by influencing serum C3 levels. Further investigation is necessary to elucidate the underlying mechanisms.

14.
Hepatology ; 80(1): 69-86, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38377465

RESUMEN

BACKGROUND AND AIMS: Lymph node metastasis is a significant risk factor for patients with cholangiocarcinoma, but the mechanisms underlying cholangiocarcinoma colonization in the lymph node microenvironment remain unclear. We aimed to determine whether metabolic reprogramming fueled the adaptation and remodeling of cholangiocarcinoma cells to the lymph node microenvironment. APPROACH AND RESULTS: Here, we applied single-cell RNA sequencing of primary tumor lesions and paired lymph node metastases from patients with cholangiocarcinoma and revealed significantly reduced intertumor heterogeneity and syntropic lipid metabolic reprogramming of cholangiocarcinoma after metastasis to lymph nodes, which was verified by pan-cancer single-cell RNA sequencing analysis, highlighting the essential role of lipid metabolism in tumor colonization in lymph nodes. Metabolomics and in vivo CRISPR/Cas9 screening identified PPARγ as a crucial regulator in fueling cholangiocarcinoma colonization in lymph nodes through the oleic acid-PPARγ-fatty acid-binding protein 4 positive feedback loop by upregulating fatty acid uptake and oxidation. Patient-derived organoids and animal models have demonstrated that blocking this loop impairs cholangiocarcinoma proliferation and colonization in the lymph node microenvironment and is superior to systemic inhibition of fatty acid oxidation. PPARγ-regulated fatty acid metabolic reprogramming in cholangiocarcinoma also contributes to the immune-suppressive niche in lymph node metastases by producing kynurenine and was found to be associated with tumor relapse, immune-suppressive lymph node microenvironment, and poor immune checkpoint blockade response. CONCLUSIONS: Our results reveal the role of the oleic acid-PPARγ-fatty acid-binding protein 4 loop in fueling cholangiocarcinoma colonization in lymph nodes and demonstrate that PPARγ-regulated lipid metabolic reprogramming is a promising therapeutic target for relieving cholangiocarcinoma lymph node metastasis burden and reducing further progression.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Proteínas de Unión a Ácidos Grasos , Metástasis Linfática , Ácido Oléico , PPAR gamma , Microambiente Tumoral , Colangiocarcinoma/patología , Colangiocarcinoma/metabolismo , PPAR gamma/metabolismo , Humanos , Neoplasias de los Conductos Biliares/patología , Neoplasias de los Conductos Biliares/metabolismo , Animales , Proteínas de Unión a Ácidos Grasos/metabolismo , Ratones , Ganglios Linfáticos/patología , Metabolismo de los Lípidos
15.
Am J Pathol ; 194(6): 1078-1089, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38417697

RESUMEN

Ferroptosis is a new form of cell death characterized by iron-dependent lipid peroxidation. Whether ferroptosis is involved in retinal microvascular dysfunction under diabetic condition is not known. Herein, the expression of ferroptosis-related genes in patients with proliferative diabetic retinopathy and in diabetic mice was determined with quantitative RT-PCR. Reactive oxygen species, iron content, lipid peroxidation products, and ferroptosis-associated proteins in the cultured human retinal microvascular endothelial cells (HRMECs) and in the retina of diabetic mice were examined. The association of ferroptosis with the functions of endothelial cells in vitro was evaluated. After administration of ferroptosis-specific inhibitor, Fer-1, the retinal microvasculature in diabetic mice was assessed. Characteristic changes of ferroptosis-associated markers, including glutathione peroxidase 4, ferritin heavy chain 1, long-chain acyl-CoA synthetase 4, transferrin receptor protein 1, and cyclooxygenase-2, were detected in the retinal fibrovascular membrane of patients with proliferative diabetic retinopathy, cultured HRMECs, and the retina of diabetic mice. Elevated levels of reactive oxygen species, lipid peroxidation, and iron content were found in the retina of diabetic mice and in cultured HRMECs. Ferroptosis was found to be associated with HRMEC dysfunction under high-glucose condition. Inhibition of ferroptosis with specific inhibitor Fer-1 in diabetic mice significantly reduced the severity of retinal microvasculopathy. Ferroptosis contributes to microvascular dysfunction in diabetic retinopathy, and inhibition of ferroptosis might be a promising strategy for the therapy of early-stage diabetic retinopathy.


Asunto(s)
Retinopatía Diabética , Ferroptosis , Especies Reactivas de Oxígeno , Retinopatía Diabética/patología , Retinopatía Diabética/metabolismo , Animales , Humanos , Ratones , Masculino , Especies Reactivas de Oxígeno/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/patología , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Peroxidación de Lípido , Ratones Endogámicos C57BL , Microvasos/patología , Microvasos/metabolismo , Hierro/metabolismo , Vasos Retinianos/metabolismo , Vasos Retinianos/patología
16.
J Mater Chem B ; 12(5): 1317-1329, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38229564

RESUMEN

Bacterial biofilm infection is a serious obstacle to clinical therapeutics. Photodynamic therapy (PDT) plays a dynamic role in combating biofilm infection by utilizing reactive oxygen species (ROS)-induced bacterial oxidation injury, showing advantages of mild side effects, spatiotemporal controllability and little drug resistance. However, superfluous glutathione (GSH) present in biofilm and bacteria corporately reduces ROS levels and seriously affects PDT efficiency. Herein, we have constructed a Cu2+-infused porphyrin metal-organic framework (MOF@Cu2+) for the enhanced photodynamic combating of biofilm infection by the maximum depletion of GSH. Our results show that the released Cu2+ from porphyrin MOF@Cu2+ could not only oxidize GSH in biofilm but also consume GSH leaked from ROS-destroyed bacteria, thus greatly weakening the antioxidant system in biofilm and bacteria and dramatically improving the ROS levels. As expected, our dual-enhanced PDT nanoplatform exhibits a strong biofilm eradication ability both in vitro and in an in vivo biofilm-infected mouse model. In addition, Cu2+ can promote biofilm-infected wound closing by provoking cell immigration, collagen sediment and angiogenesis. Besides, no apparent toxicity was detected after treatment with MOF@Cu2+. Overall, our design offers a new paradigm for photodynamic combating biofilm infection.


Asunto(s)
Fotoquimioterapia , Porfirinas , Animales , Ratones , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Cobre/farmacología , Porfirinas/farmacología , Especies Reactivas de Oxígeno , Glutatión , Bacterias , Biopelículas
17.
J Assist Reprod Genet ; 41(3): 673-681, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38277112

RESUMEN

BACKGROUND: Inappropriate pre-pregnancy body mass index (BMI) and gestational weight gain (GWG) are both linked to preterm birth (PTB); however, which one plays a dominant role in PTB risk is not yet sure. We aimed to evaluate the combined effect of pre-pregnancy BMI and GWG on the risk of PTB in singleton pregnancies conceived both spontaneously and through assisted reproductive technology (ART). METHODS: The data included all mothers (n = 17,540,977) who had a live singleton birth from the US National Vital Statistics System (NVSS) 2015-2019. Logistic regression models, quantile-g-computation, and generalized additive model were used to analyze the combined association of pre-pregnancy BMI and GWG with PTB. RESULTS: The singleton PTB rate was significantly higher in ART pregnancies (11.5%) than in non-ART pregnancies (7.9%). When compared to those women with pre-pregnancy normal weight and GWG within Institute of Medicine (IOM) guidelines, the highest PTB risk was observed in non-ART women with pre-pregnancy underweight and GWG below IOM guidelines (aOR 2.56; 95% CI 2.53-2.60) and in ART women with pre-pregnancy obese and GWG below IOM guidelines (aOR 2.56; 95%CI 2.36-2.78). GWG dominated the combined effect with its joint effect coefficient of - 0.281 (P < 0.05) in non-ART women and - 0.108 (P < 0.05) in ART women. CONCLUSIONS: Inappropriate GWG played a dominant role in increasing the risk of PTB in both non-ART and ART populations. Counseling regarding pre-pregnancy BMI and especially GWG appears to be even more crucial for pregnancies conceived via ART, given their impact on PTB.


Asunto(s)
Ganancia de Peso Gestacional , Nacimiento Prematuro , Embarazo , Femenino , Recién Nacido , Humanos , Nacimiento Prematuro/epidemiología , Índice de Masa Corporal , Resultado del Embarazo , Técnicas Reproductivas Asistidas/efectos adversos , Peso al Nacer
18.
Curr Eye Res ; 49(4): 368-379, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38164922

RESUMEN

PURPOSE: Circular RNAs (circRNAs) are products of alternative splicing with roles as competitive endogenous RNAs or microRNA sponges, regulating gene expression and biological processes. However, the involvement of circRNAs in herpes simplex keratitis remains largely unexplored. METHODS: This study examines circRNA and miRNA expression profiles in primary human corneal epithelial cells infected with HSV-1, compared to uninfected controls, using microarray analysis. Bioinformatic analysis predicted the potential function of the dysregulated circRNAs and microRNA response elements (MREs) in these circRNAs, forming an interaction network between dysregulated circRNAs and miRNAs. RESULTS: A total of 332 circRNAs and 16 miRNAs were upregulated, while 80 circRNAs and six miRNAs were downregulated (fold change ≥2.0 and p < 0.05). Gene ontology (GO) and KEGG pathway analyses were performed on parental genes of dysregulated circRNAs to uncover potential functions in HSV-1 infection. Notably, miR-181b-5p, miR-338-3p, miR-635, and miR-222-3p emerged as pivotal miRNAs interacting with multiple dysregulated circRNAs. CONCLUSIONS: This comprehensive study offers insights into differentially expressed circRNAs and miRNAs during HSV-1 infection in corneal epithelial cells, shedding light on circRNA-miRNA interactions' potential role in herpes simplex keratitis pathogenesis.


Asunto(s)
Herpes Simple , Herpesvirus Humano 1 , Queratitis Herpética , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética , Herpesvirus Humano 1/genética , Células Epiteliales/metabolismo , Queratitis Herpética/genética
19.
Front Public Health ; 11: 1241029, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38152666

RESUMEN

The outbreak of novel coronavirus pneumonia (COVID-19) is closely related to the intra-urban environment. It is important to understand the influence mechanism and risk characteristics of urban environment on infectious diseases from the perspective of urban environment composition. In this study, we used python to collect Sina Weibo help data as well as urban multivariate big data, and The random forest model was used to measure the contribution of each influential factor within to the COVID-19 outbreak. A comprehensive risk evaluation system from the perspective of urban environment was constructed, and the entropy weighting method was used to produce the weights of various types of risks, generate the specific values of the four types of risks, and obtain the four levels of comprehensive risk zones through the K-MEANS clustering of Wuhan's central urban area for zoning planning. Based on the results, we found: ①the five most significant indicators contributing to the risk of the Wuhan COVID-19 outbreak were Road Network Density, Shopping Mall Density, Public Transport Density, Educational Facility Density, Bank Density. Floor Area Ration, Poi Functional Mix ②After streamlining five indicators such as Proportion of Aged Population, Tertiary Hospital Density, Open Space Density, Night-time Light Intensity, Number of Beds Available in Designated Hospitals, the prediction accuracy of the random forest model was the highest. ③The spatial characteristics of the four categories of new crown epidemic risk, namely transmission risk, exposure risk, susceptibility risk and Risk of Scarcity of Medical Resources, were highly differentiated, and a four-level integrated risk zone was obtained by K-MEANS clustering. Its distribution pattern was in the form of "multicenter-periphery" gradient diffusion. For the risk composition of the four-level comprehensive zones combined with the internal characteristics of the urban environment in specific zones to develop differentiated control strategies. Targeted policies were then devised for each partition, offering a practical advantage over singular COVID-19 impact factor analyses. This methodology, beneficial for future public health crises, enables the swift identification of unique risk profiles in different partitions, streamlining the formulation of precise policies. The overarching goal is to maintain regular social development, harmonizing preventive measures and economic efforts.


Asunto(s)
COVID-19 , Epidemias , Humanos , Anciano , COVID-19/epidemiología , Ciudades , SARS-CoV-2 , Brotes de Enfermedades
20.
J Mater Chem B ; 11(43): 10395-10403, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37876312

RESUMEN

We have developed a targeted nano-drug delivery system that effectively harnesses the anti-tumor properties of trifluoperazine (TFP), while concurrently mitigating its side effects on the central nervous system. The manufacturing process entailed the preparation of mesoporous silica nanoparticles (MSN-NH2), followed by the loading of trifluoperazine into the pores of MSN-NH2 and then surface modification with polyethylene glycol (PEG) and anisamide (AA), resulting in the formation of TFP@MSN@PEG-AA (abbreviated as TMPA) nanoparticles. In vitro and in vivo anti-tumor activity and hemolysis experiments showed that TMPA had an excellent safety profile and a good anti-tumor effect. Importantly, the drug content of the TMPA nanoparticle group was found to be significantly lower than that of the TFP group in the mouse brain tissue as determined by High Performance Liquid Chromatography (HPLC) detection. Therefore, the developed drug delivery system achieved the goal of maintaining TFP's anti-tumor action while avoiding its negative effects on the central nervous system.


Asunto(s)
Nanopartículas , Neoplasias , Ratones , Animales , Dióxido de Silicio/química , Trifluoperazina , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA