Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 39
1.
Opt Express ; 32(6): 9837-9846, 2024 Mar 11.
Article En | MEDLINE | ID: mdl-38571208

Obstruction is inevitable and will significantly impact the actual output performance of photovoltaic modules, even jeopardize their operational safety. We introduced a layer of bubbles into photovoltaic glass. These bubbles can alter the path of incident light, while the internal reflection at the glass/air interface enables the redirected light rays to have longer lateral propagation distance, circumventing the obstructions. The optimized photovoltaic glass with a bubble diameter of 1.8 mm and a surface density of 16 cm-2 enables the light intensity underneath a 6.6 × 6.6 cm2 obstruction to reach 21.83% of the incident light intensity. This enhancement permits a partial shading of the photovoltaic module, increasing its output power by ∼20.8% and decreasing the reverse bias voltage on the shaded cell by ∼1.4 V.

2.
BMC Geriatr ; 24(1): 258, 2024 Mar 16.
Article En | MEDLINE | ID: mdl-38493082

BACKGROUND: Physical activity (PA) plays an important role in the process of several chronic diseases. It may be also associated with the incidence of sarcopenia. This study aimed to determine the association of PA from different components including frequency, duration, intensity, and volume with the incidence of sarcopenia in middle-aged and older adults. METHODS: This study used data from the China Health and Retirement Longitudinal Study in 2011 and 2015. A total of 3,760 individuals aged ≥ 40 years were involved in this study. Sarcopenia was diagnosed using muscle mass, strength and physical performance according to the Asian Working Group for Sarcopenia. PA information including frequency, duration, intensity, and volume was obtained by a self-reported questionnaire. Logistic regression analysis was employed to examine the association between PA and the incidence of sarcopenia at 4-year follow-up. RESULTS: The incidence of sarcopenia was 5.9% during the 4-year follow-up. Compared to sedentary individuals, those taking 1-2 days or more per week, or a minimum of 10 min each time on vigorous-intensity PA (VPA) had a lower incidence of sarcopenia. Adults spending 3 days or more each week, a minimum of 30 min each time, or 150 min or more per week on moderate-intensity PA (MPA) had a lower presence of sarcopenia than sedentary adults. Adults taking 3 days or more per week, at least 30 min each time, or 150 min or more each week on light-intensity PA (LPA) tended to have a lower incidence of sarcopenia than sedentary individuals. Sensitivity analyses confirmed the robustness of the findings after removing persons with hypertension, dyslipidemia, or diabetes. CONCLUSIONS: These findings suggest that the frequency, duration, and volume of VPA or MPA are negatively associated with the presence of sarcopenia. Participation in LPA tends to have a lower incidence of sarcopenia in middle-aged and older adults.


Sarcopenia , Humans , Middle Aged , Aged , Sarcopenia/diagnosis , Sarcopenia/epidemiology , Longitudinal Studies , Incidence , Exercise/physiology , China/epidemiology
3.
J Cell Biochem ; 125(4): e30544, 2024 Apr.
Article En | MEDLINE | ID: mdl-38450777

Mesenchymal stem cells (MSCs) display unique homing and immunosuppression features which make them promising candidates for cell therapy in inflammatory disorders. It is known that C-X-C chemokine receptor type 4 (CXCR4, also known as CD184) is a critical receptor implicated in MSCs migration, and the protein programmed death ligand-1 (PD-L1) is involved in MSC's immunosuppression. However, it remains unclear how the molecular mechanisms regulate PD-L1 expression for migration and immunosuppression of MSCs under the inflammatory microenvironment. In this article, we used the human adipose-derived mesenchymal stem cells (hADMSCs) treated with lipopolysaccharide (LPS) as an in vitro inflammatory model to explore the roles of PD-L1 on the migration and immunosuppression of MSC. Our results demonstrate that in hADMSCs, LPS significantly increased PD-L1 expression, which mediated the migration of the LPS-treated hADMSCs via CXCR4. In addition, we found that the increased PD-L1 expression in the LPS-treated hADMSCs inhibited B cell proliferation and immunoglobulin G secretion through nuclear factor-κB. Our study suggests that the PD-L1 plays critical roles in the homing and immunosuppression of MSCs which are a promising cell therapy to treat inflammatory diseases.


B7-H1 Antigen , Mesenchymal Stem Cells , Humans , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Mesenchymal Stem Cells/metabolism , NF-kappa B/metabolism , Signal Transduction
4.
J Hazard Mater ; 469: 134002, 2024 May 05.
Article En | MEDLINE | ID: mdl-38503213

More than 4.5 billion tons of unconventional uranium resources [UO2(CO3)3]4- are uniformly dissolved in seawater, providing a sustainable and abundant fuel source for the development of nuclear energy. Herein, we presented a rational design and development of Ti3C2Tx nanocontainer inspired by the exceptional selectivity and affinity exhibited by superb-uranyl proteins through amino acid intercalation. The amino acid intercalation of Ti3C2Tx demonstrated exceptional UO22+ capture capacity (Arg-Ti3C2Tx, His-Ti3C2Tx, and Lys-Ti3C2Tx with qmax values of 594.46, 846.04, and 1030.17 mg/g). Furthermore, these intercalated materials exhibited remarkable sequestration efficiency and selectivity (Uinitial = ∼45.2 ∼7636 µg/L; ∼84.45% ∼98.08%; and ∼2.72 ×104 ∼1.28 ×105 KdU value), despite the presence of an overwhelming surplus of Na+, Ca2+, Mg2+, and Co2+ ions. Significantly, even in the 0.3 M NaHCO3 solution and surpassing 103-fold of the Na3VO4 system, the adsorption efficiency of Lys-Ti3C2Tx still achieved a remarkable 63.73% and 65.05%. Moreover, the Lys-Ti3C2Tx can extract ∼30.23 ∼8664.03 µg/g uranium after 24 h contact in ∼13.3 ∼5000 µg/L concentration from uranium-spiked natural seawater. The mechanism analysis revealed that the high binding capability can be attributed to the chelation of carboxyl and amino groups with uranyl ions. This innovative state-of-the-art approach in regulating uranium harvesting capability through intercalation of amino acid molecules provides novel insights for extracting uranium from seawater.

5.
Plant Dis ; 2024 Feb 07.
Article En | MEDLINE | ID: mdl-38326934

The small tree species Rhamnella franguloides, belonging to the genus Rhamnella in the tribe Rhamneae Hook. f. of Rhamnaceae (Hauenschild et al. 2016), is an important medicinal plant commonly used for making tea in China. In August 2023, leaf spot symptoms were observed on R. franguloides in Shangyao county, Yantai, Shandong, China, with a disease incidence of 45-65%. Initially appearing as small dark brown spots on the tip lesions, they later expanded and merged into irregular-shaped brown necrotic lesions with yellowish halos. To isolate pathogen, 20 symptomatic tissue fragments (5 × 5 mm) from ten sampling randomly plants were surface sterilized, placed on potato dextrose agar (PDA) plates, and incubated at 25°C in darkness for 3 days to obtain colonies.10 purified isolates with similar morphological characteristics were obtained by single-spore isolation from the colonies. The representative isolate MR13 was chosen for morphological and molecular analysis. The colonies On PDA medium initially appear as a circular yellow-brown ring with white round margins, ultimately turning into olive green with fluffy aerial hyphae. The conidiophores displayed brown pigmentation, solitary or branched, producing abundant short chains of conidia. The conidia were typically obclavate to obpyriform or ellipsoid in shape, 22.5-64.5 × 12.5-23.6µm in size, with a short conical beak at the apex, zero to three longitudinal septa and one to five transverse septa. Based on cultural and morphological characteristics, the fungus was identified as Alternaria spp (Simmons 2007). Due to morphological traits, five genes (the internal transcribed spacer [ITS], actin [ACT], plasma membrane ATPase [ATP], Alternaria major allergen [Alt a1] and histone 3 [H3]) form MR13 were amplified using primer pairs ITSI / ITS4, ACTDF1/R1, ATPDF1 / ATPDRI, Alt-for / Alt-rev, and H3-1a/1b, respectively (Hong et al. 2005; Lawrence et al. 2013; Lousie and Donaldson 1995). BLASTn analysis failed to confirm the identification of MR13 species based on ITS, ACT, ATP and Alt a1(ITS, OR668512; ACT, OR676918; ATP, OR676917; Alt a1, OR676919). The phylogenetic tree showed that it was closely related to Alternaria alternate, A. tenuissima, and A. destruens. The H3 sequence (OR676920) exhibited 100% similarity to A. tenuissima (OR485421). The phylogenetic tree constructed solely with H3 further confirmed MR13 as A. tenuissima. Pathogenicity tests were conducted by introducing the fungus onto healthy R. franguloides leaves in the field. Fifty leaves (five per plant) were treated with a 20ml suspension containing around 1x10^4 spores/ml, while an equal number of control samples were sprayed with distilled water. Transparent plastic bags were used to cover the treated leaves for 48 hours and maintain humidity. After fourteen days of inoculation, consistent leaf spotting symptoms were observed. In contrast, the control leaves showed no sign of infection. The fungal pathogen was successfully reisolated and identified as A. tenuissima through morphological and sequence analysis, fulfilling Koch's postulates. To our knowledge, this is the first report of A. tenuissima causing leaf spot disease on R. franguloides in China. Identifying the disease's causal agent is crucial for developing effective management strategies.

6.
Chemphyschem ; 25(7): e202300942, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38270388

It is well known that magnetic field is one of the effective tools to improve the activity of hydrogen evolution reaction (HER), but considering the inconvenient application of an external magnetic field, it is essential to find a ferromagnetic material with high HER activity itself. Fortunately, recent study has shown that the two-dimmention (2D) Fe2Sn monolayer is a stable ferromagnetic topological Weyl semimetal material with high Tc of 433 K. Here, we report the Fe2Sn monolayer can be used as an alternative HER catalyst compared with expensive platinum (Pt). Our first-principles results show that the Gibbs free energy (ΔGH*) value of the spin polarized Fe2Sn monolayer is -0.06 eV, much better than that without considering spin polarization (-1.23 eV). Moreover, the kinetic analysis demonstrates that the HER occurs on the Fe2Sn monolayer according to the Volmer-Tafel mechanism with low energy barriers. Hence, our findings provide obvious evidence for spin-polarization-improved HER activity, paving a new way to design high-performance HER catalysts.

7.
Angew Chem Int Ed Engl ; 63(1): e202315238, 2024 Jan 02.
Article En | MEDLINE | ID: mdl-37953400

Ambient electrochemical ammonia (NH3 ) synthesis is one promising alternative to the energy-intensive Haber-Bosch route. However, the industrial requirement for the electrochemical NH3 production with amperes current densities or gram-level NH3 yield remains a grand challenge. Herein, we report the high-rate NH3 production via NO2 - reduction using the Cu activated Co electrode in a bipolar membrane (BPM) assemble electrolyser, wherein BPM maintains the ion balance and the liquid level of electrolyte. Benefited from the abundant Co sites and optimal structure, the target modified Co foam electrode delivers a current density of 2.64 A cm-2 with the Faradaic efficiency of 96.45 % and the high NH3 yield rate of 279.44 mg h-1 cm-2 in H-type cell using alkaline electrolyte. Combined with in situ experiments and theoretical calculations, we found that Cu optimizes the adsorption behavior of NO2 - and facilitates the hydrogenation steps on Co sites toward a rapid NO2 - reduction process. Importantly, this activated Co electrode affords a large NH3 production up to 4.11 g h-1 in a homemade reactor, highlighting its large-scale practical feasibility.

8.
Neuroimage ; 282: 120393, 2023 11 15.
Article En | MEDLINE | ID: mdl-37820861

In real-life communication, individuals use language that carries evident rewarding and punishing elements, such as praise and criticism. A common trend is to seek more praise while avoiding criticism. Furthermore, semantics is crucial for conveying information, but such semantic access to native and foreign languages is subtly distinct. To investigate how rule learning occurs in different languages and to highlight the importance of semantics in this process, we investigated both verbal and non-verbal rule learning in first (L1) and second (L2) languages using a reinforcement learning framework, including a semantic rule and a color rule. Our computational modeling on behavioral and brain imaging data revealed that individuals may be more motivated to learn and adhere to rules in an L1 compared to L2, with greater striatum activation during the outcome phase in the L1. Additionally, results on the learning rates and inverse temperature in the two rule learning tasks showed that individuals tend to be conservative and are reluctant to change their judgments regarding rule learning of semantic information. Moreover, the greater the prediction errors, the greater activation of the right superior temporal gyrus in the semantic-rule learning condition, demonstrating that such learning has differential neural correlates than symbolic rule learning. Overall, the findings provide insight into the neural mechanisms underlying rule learning in different languages, and indicate that rule learning involving verbal semantics is not a general symbolic learning that resembles a conditioned stimulus-response, but rather has its own specific characteristics.


Learning , Semantics , Humans , Language , Brain/physiology , Temporal Lobe/diagnostic imaging , Temporal Lobe/physiology , Brain Mapping , Magnetic Resonance Imaging
9.
Cancer Chemother Pharmacol ; 92(3): 165-179, 2023 09.
Article En | MEDLINE | ID: mdl-37410155

As a new means of oncology treatment, immune checkpoint inhibitors (ICIs) can improve survival rates in patients with resistant or refractory tumors. However, there are obvious inter-individual differences in the unsatisfactory response rate, drug resistance rate and the occurrence of immune-related adverse events (irAE). These questions have sparked interest in researchers looking for a way to screen sensitive populations and predict efficacy and safety. Therapeutic drug monitoring (TDM) is a way to ensure the safety and effectiveness of medication by measuring the concentration of drugs in body fluids and adjusting the medication regimen. It has the potential to be an adjunctive means of predicting the safety and efficacy of ICIs treatment. In this review, the author outlined the pharmacokinetic (PK) characteristics of ICIs in patients. The feasibility and limitations of TDM of ICIs were discussed by summarizing the relationships between the pharmacokinetic parameters and the efficacy, toxicity and biomarkers.


Drug Monitoring , Immune Checkpoint Inhibitors , Humans , Immune Checkpoint Inhibitors/adverse effects , Biomarkers , Medical Oncology
10.
Cogn Neurodyn ; 17(4): 893-907, 2023 Aug.
Article En | MEDLINE | ID: mdl-37522041

Bilingual adaptive control mechanisms appear to be linked to congenital genetic factors such as dopamine (DA) genes. However, it is unclear as to whether acquired cognitive exercise can vanquish innate influences that allow bilingual executive advantages to be shown in other cognitive areas. In the present study, we examine the relationship between gene-dependent executive control and decision-making by targeting the enzyme catecholamine-O-methyltransferase (COMT) and employing electroencephalography (EEG). Chinese-English bilinguals (N = 101) participated in a language switching task and the Iowa Gambling Task (IGT). The findings showed that COMT Val158Met polymorphism played a complex role in decision-making and bilingual executive control processing: Bilinguals with Valine (Val) homozygotes had poorer performance in the IGT, while Methionine (Met) carriers had larger switch costs in the language switching task. Second, the cross-task relationships varied among bilinguals with different COMT genotypes: Bilinguals with Met allele genotypes showed larger switch costs and better performance on the IGT. These findings suggest that bilinguals who carry Met allele are equipped with more efficient adaptive mechanisms of executive functions that are generalized to other cognitive domains. Supplementary Information: The online version contains supplementary material available at 10.1007/s11571-022-09867-2.

11.
Clin Cardiol ; 46(8): 958-966, 2023 Aug.
Article En | MEDLINE | ID: mdl-37430468

BACKGROUND: Social determinants of health (SDH) reflecting social deprivation have been developed for population health management. There is a paucity of data on the prevalence of SDH and its associations with prevalent hypertension in women compared with men. METHODS: A total of 49 791 participants aged over 20 years from the 1999-2018 National Health and Nutrition Examination Surveys, were included. Information on the SDH, including race/ethnicity, education level, family income, housing, marriage status, employment, were collected. We calculated the prevalence ratio (PR) for each adverse SDH with prevalent hypertension and uncontrolled hypertension by using Cox regression with equal times of follow-up assigned to all individuals with adjustment for age, diabetes, taking lipid-lowering medication, and health behaviors. The population-attributable fractions (PAF) of the SDH were also assessed. RESULTS: A lower proportion of low education attainment was observed in women than men (women: 16.8% vs. men: 17.9%, p = .003), but women had higher proportions of low family income (15.3% vs. 12.5%, p < .001), unmarried state (47.3% vs. 40.9%, p < .001), and unemployment (22.7% vs. 10.7%, p < .001). All the SDH was significantly associated with hypertension in women. There were significant dose-response associations between the numbers of adverse SDH with hypertension. The total PAF of SDH for prevalent hypertension was greater in women (22.2%) than in men (13.9%). CONCLUSIONS: The widely influential SDH is associated with prevalent hypertension and uncontrolled hypertension. To improve hypertension management, health resources should prioritize socioeconomically disadvantaged groups considering gender differences.


Hypertension , Social Determinants of Health , Male , Humans , United States/epidemiology , Female , Adult , Nutrition Surveys , Hypertension/diagnosis , Hypertension/epidemiology , Income , Poverty
12.
Nano Lett ; 23(14): 6705-6712, 2023 Jul 26.
Article En | MEDLINE | ID: mdl-37431747

Wide-bandgap perovskites play a key role in high-performance tandem solar cells, which have the potential to break the Schockley-Queisser limit. Here, a 2D/3D hybrid wide-bandgap perovskite was developed using octane-1,8-diaminium (ODA) as spacer. The incorporation of the ODA spacer can not only significantly reduce charge carrier nonradiative recombination loss but also inhibit phase separation. Moreover, with a synergy effect using butylammonium iodide (BAI) as a surface defect passivator, both the phase stability and device performance were further improved. Compared to the control inverted device with a VOC of 1.16 V and a PCE of 18.50%, the optimized PSCs based on a surface processed 2D/3D perovskite exhibit a superior high VOC of 1.26 V and a champion PCE of 22.19%, which is a record efficiency for wide-bandgap PSCs (Eg > 1.65 eV). This work provides a very effective strategy to suppress phase separation in wide-bandgap perovskites for highly efficient and stable solar cells.

13.
Sci Rep ; 13(1): 9072, 2023 06 05.
Article En | MEDLINE | ID: mdl-37277439

The preparation of controllable micro/nano structures on the surface of the bredigite scaffold is expected to exhibit the same support and osteoconductive capabilities as living bone. However, the hydrophobicity of the white calciµm silicate scaffold surface restricts the adhesion and spreading of osteoblasts. Furthermore, during the degradation process of the bredigite scaffold, the release of Ca2+ results in an alkaline environment around the scaffold, which inhibits the growth of osteoblasts. In this study, the three-dimensional geometry of the Primitive surface in the three-periodic minimal surface with an average curvature of 0 was used as the basis for the scaffold unit cell, and a white hydroxyapatite scaffold was fabricated via photopolymerization-based 3D printing. Nanoparticles, microparticles, and micro-sheet structures with thicknesses of 6 µm, 24 µm, and 42 µm, respectively, were prepared on the surface of the porous scaffold through a hydrothermal reaction. The results of the study indicate that the micro/nano surface did not affect the morphology and mineralization ability of the macroporous scaffold. However, the transition from hydrophobic to hydrophilic resulted in a rougher surface and an increase in compressive strength from 45 to 59-86 MPa, while the adhesion of the micro/nano structures enhanced the scaffold's ductility. In addition, after 8 days of degradation, the pH of the degradation solution decreased from 8.6 to around 7.6, which is more suitable for cell growth in the hµman body. However, there were issues of slow degradation and high P element concentration in the degradation solution for the microscale layer group during the degradation process, so the nanoparticle and microparticle group scaffolds could provide effective support and a suitable environment for bone tissue repair.


Nanostructures , Porosity , Temperature , Adhesiveness , Hydrophobic and Hydrophilic Interactions
14.
Int J Bioprint ; 9(3): 708, 2023.
Article En | MEDLINE | ID: mdl-37273998

The use of bone tissue-engineered scaffolds for repairing bone defects has become extremely common. Bone tissue-engineered scaffolds should have good mechanical properties, a pore structure similar to that of natural bone, appropriate biodegradability, and good biocompatibility to provide attachment sites for growth factors and seed cells. They also need to exhibit special functions such as osteoconductivity and osteoinduction. In this study, the mechanical, degradation, and biological properties of bredigite were studied by using a triply periodic minimal surface (TPMS) model structure. Pressure tests on bone tissue-engineered scaffolds showed that the mechanical properties of TPMS scaffolds were significantly better than those of open-rod scaffolds with the same porosity. By analyzing the biological properties, we found that the TPMS model had better protein adsorption ability than the open-rod model, the cells could better adsorb on the surface of the TPMS scaffold, and the proliferation number and proliferation rate of the TPMS model were higher than those of the open-ended rod model.

15.
Adv Mater ; 35(41): e2303455, 2023 Oct.
Article En | MEDLINE | ID: mdl-37363875

Ammonia (NH3 ) is essential for modern agriculture and industry, and, due to its high hydrogen density and no carbon emission, it is also expected to be the next-generation of "clean" energy carrier. Herein, directly from air and water, a plasma-electrocatalytic reaction system for NH3 production, which combines two steps of plasma-air-to-NOx - and electrochemical NOx - reduction reaction (eNOx RR) with a bifunctional catalyst, is successfully established. Especially, the bifunctional catalyst of CuCo2 O4 /Ni can simultaneously promote plasma-air-to-NOx - and eNOx RR processes. The easy adsorption and activation of O2 by CuCo2 O4 /Ni greatly improve the NOx - production rate at the first step. Further, CuCo2 O4 /Ni can also resolve the overbonding of the key intermediate of * NO, and thus reduce the energy barrier of the second step of eNOx RR. Finally, the "green" NH3 production achieves excellent FENH3 (96.8%) and record-high NH3 yield rate of 145.8 mg h-1  cm-2 with large partial current density (1384.7 mA cm-2 ). Moreover, an enlarged self-made H-type electrolyzer improves the NH3 yield to 3.6 g h-1 , and the obtained NH3 is then rapidly converted to a solid of magnesium ammonium phosphate hexahydrate, which favors the easy storage and transportation of NH3 .

16.
Macromol Rapid Commun ; 44(23): e2300213, 2023 Dec.
Article En | MEDLINE | ID: mdl-37230735

The dielectronic constant of organic semiconductor materials is directly related to its molecule dipole moment, which can be used to guide the design of high-performance organic photovoltaic materials. Herein, two isomeric small molecule acceptors, ANDT-2F and CNDT-2F, are designed and synthesized by using the electron localization effect of alkoxy in different positions of naphthalene. It is found that the axisymmetric ANDT-2F exhibits a larger dipole moment, which can improve exciton dissociation and charge generation efficiencies due to the strong intramolecular charge transfer effect, resulting in the higher photovoltaic performance of devices. Moreover, PBDB-T:ANDT-2F blend film exhibits larger and more balanced hole and electron mobility as well as nanoscale phase separation due to the favorable miscibility. As a result, the optimized device based on axisymmetric ANDT-2F shows a JSC of 21.30 mA cm-2 , an FF of 66.21%, and a power conversion energy of 12.13%, higher than that of centrosymmetric CNDT-2F-based device. This work provides important implications for designing and synthesizing efficient organic photovoltaic materials by tuning their dipole moment.


Electrons , Semiconductors , Isomerism
17.
Hum Brain Mapp ; 44(9): 3624-3643, 2023 06 15.
Article En | MEDLINE | ID: mdl-37051723

Previous studies have debated whether the ability for bilinguals to mentally control their languages is a consequence of their experiences switching between languages or whether it is a specific, yet highly-adaptive, cognitive ability. The current study investigates how variations in the language-related gene FOXP2 and executive function-related genes COMT, BDNF, and Kibra/WWC1 affect bilingual language control during two phases of speech production, namely the language schema phase (i.e., the selection of one language or another) and lexical response phase (i.e., utterance of the target). Chinese-English bilinguals (N = 119) participated in a picture-naming task involving cued language switches. Statistical analyses showed that both genes significantly influenced language control on neural coding and behavioral performance. Specifically, FOXP2 rs1456031 showed a wide-ranging effect on language control, including RTs, F(2, 113) = 4.00, FDR p = .036, and neural coding across three-time phases (N2a: F(2, 113) = 4.96, FDR p = .014; N2b: F(2, 113) = 4.30, FDR p = .028, LPC: F(2, 113) = 2.82, FDR p = .060), while the COMT rs4818 (ts >2.69, FDR ps < .05), BDNF rs6265 (Fs >5.31, FDR ps < .05), and Kibra/WWC1 rs17070145 (ts > -3.29, FDR ps < .05) polymorphisms influenced two-time phases (N2a and N2b). Time-resolved correlation analyses revealed that the relationship between neural coding and cognitive performance is modulated by genetic variations in all four genes. In all, these findings suggest that bilingual language control is shaped by an individual's experience switching between languages and their inherent genome.


Multilingualism , Humans , Brain-Derived Neurotrophic Factor , Language , Executive Function/physiology , Electroencephalography , Intracellular Signaling Peptides and Proteins
18.
Article En | MEDLINE | ID: mdl-36753842

Meropenem, a carbapenem antibiotic, has been used for empirical and definitive therapy of severe infections for many years. Therapeutic drug monitoring (TDM) plays an indispensable role in the individualization of meropenem particularly in the preterm neonates, a population in which adjusting proper dosages has always been one of the most challenging tasks for their growth changes. In this report, a simple and accurate method for the quantitative analysis of meropenem in dried blood spot (DBS) samples by LC-MS/MS was developed. The traditional DBS drawbacks were conquered in this study by combining microfluidic-based volumetric sampling, shorten drying procedure, and sensitive detection. Moreover, the on-card stability of meropenem was improved obviously. The DBS-based method validation included hematocrit (Hct) effect, selectivity, carry-over, linearity, accuracy, precision, matrix effect, recovery and stability (high temperature and humidity). The calibration linear range of meropenem was 0.3-100 µg/mL. The acceptance criteria of accuracy (relative error < 4.53 %) and precision (coefficient of variation < 8.63 %) were met in all levels of quality control samples. The DBS samples was stable at 40 °C for 12 h, room temperature for 1 day, 4 °C for 7 days, -20 °C for 14 days and -40 °C for 30 days, respectively. A good correlation was observed between DBS concentration and plasma concentration of meropenem. There was 93.4 % of the samples between estimated plasma concentration and plasma concentration within 20 % of the mean of concentration, and no significant Hct effect was observed on the quantification. It has been successfully applied to samples derived from preterm neonates with severe infections. The supported data indicated that the DBS-based method using microfluidic-based volumetric sampling could be an alternative strategy to carry on TDM of meropenem in preterm neonates, with satisfactory performance and logistics advantages.


Microfluidics , Tandem Mass Spectrometry , Humans , Infant, Newborn , Chromatography, Liquid/methods , Meropenem , Tandem Mass Spectrometry/methods , Anti-Bacterial Agents , Dried Blood Spot Testing/methods , Reproducibility of Results
19.
J Colloid Interface Sci ; 636: 588-601, 2023 Apr 15.
Article En | MEDLINE | ID: mdl-36669452

Bimetal oxide is a popular defluorinating material. Hexadecyl trimethyl ammonium bromide (CTAB) as a surfactant successfully synthesizes a novel lanthanum-zirconium phosphate to remove fluorine from groundwater. Lanthanum-zirconium phosphate at a Zr/La molar ratio of 2 exhibited a specific surface area of 455.14 m2/g with a wide pore size, which was achieved by incorporating lanthanum into materials and removing CTAB through calcination. The maximum fluoride adsorption capacity is 109.17 mg/g, which is tenfold that of mesostructured zirconium phosphate. Specifically, analysis revealed that mZrP and LamZrP2-1 were amorphous, which is consistent with HAADF-STEM. The fluoride adsorption fitted well with the pseudo-second-order equation model and Langmuir isotherm mode. LamZrP2-1 had potent anti-interference ability without PO43-. Moreover, LamZrP2-1 was reusable for at least six cycles of adsorption-desorption with little influence. The adsorption mechanism of fluoride was discussed by X-ray photoelectron spectroscopy (XPS), nuclear magnetic resonance spectroscopy (NMR) analysis, and Fourier transform infrared (FTIR) spectroscopy. Fluoride was captured by LamZrP2-1 via charge attraction, ligand exchange of different bond strengths, and ion exchange. Lanthanum-zirconium phosphate is important not only in the research and development of bimetal oxides but also in the treatment of groundwater for fluoride removal.

20.
Sci Bull (Beijing) ; 67(14): 1477-1485, 2022 Jul 30.
Article En | MEDLINE | ID: mdl-36546191

Single-atom catalysts (SACs) have attracted increasing concerns in electrocatalysis because of their maximal metal atom utilization, distinctive electronic properties, and catalytic performance. However, the isolated single sites are disadvantageous for reactions that require simultaneously activating different reactants/intermediates. Fully exposed metal cluster catalyst (FECC), inheriting the merits of SACs and metallic nanoparticles, can synergistically adsorb and activate reactants/intermediates on their multi-atomic sites, demonstrating great promise in electrocatalytic reactions. Here a facile method to regulate the atomic dispersion of Ni species from cluster to single-atom scale for efficient CO2 reduction was developed. The obtained Ni FECC exhibits high Faradaic efficiency of CO up to 99%, high CO partial current density of 347.2 mA cm-2, and robust durability under 20 h electrolysis. Theoretical calculations illuminate that the ensemble of multiple Ni atoms regulated by sulfur atoms accelerates the reaction kinetics and thus improves CO production.

...