Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 188
1.
Mol Neurobiol ; 2024 Jun 13.
Article En | MEDLINE | ID: mdl-38867110

Sex and apolipoprotein E (APOE) genotype have been shown to influence the risk and progression of Alzheimer's disease (AD). However, the impact of these factors on the functional connectivity of the entorhinal cortex (ERC) in clinically unpaired older adults (CUOA) with amyloid-ß (Aß +) pathology remains unclear. A total of 1022 cognitively normal older adults with Aß + (603 females and 586 APOE ε4 +) from the Anti-Amyloid Treatment in Asymptomatic Alzheimer's (A4) study were included in this study. The 2 × 2 (gender, 2 APOE genotypes) analysis of covariance was performed to compare the demographic information, cognitive performance, and volumetric MRI data among these groups. Voxel-wise comparisons of bilateral ERC functional connectivity (FC) were conducted, and partial correlation analyses were used to explore the associations between cognitive performance and ERC-FC strength. We found that the APOE genotype influenced ERC functional connectivity mainly in the sensorimotor network (SMN). Males exhibited higher ERC-FC in the salience network (SN), while females displayed higher ERC-FC in the default mode network (DMN), executive control network (ECN), and reward network. The interplay of sex and APOE genotype on ERC-FC was observed in the SMN and cerebellar lobe. The ERC-FC was associated with executive function and memory performance in individuals with CUOA-Aß + . Our findings provide evidence of sex-specific ERC functional connectivity compensation mechanism in cognitively normal older adults with Aß + pathology. This study may contribute to a better understanding of the mechanisms underlying the early stages of AD and may help develop personalized interventions in preclinical AD.

2.
J Biophotonics ; : e202400110, 2024 May 13.
Article En | MEDLINE | ID: mdl-38740541

In this study, we utilized a novel 355 nm laser to ablate porcine aortas in the presence of physiological saline and contrast agent. Subsequently, we investigated the shape and depth of the resulting injuries. After ablating bovine tendons and aortas with the laser, we analyzed the size and quantity of particles postablation. Finally, we conducted ablation experiments using human ex vivo plaques. The analysis revealed minimal damage to porcine aortas within 2 s of exposure to the 355 nm laser. The degree of injury in the presence of contrast agent was higher than that in the presence of physiological saline but significantly lower than the damage caused by 308 nm laser. Regardless of whether it was bovine tendon or porcine aorta tissue, the proportion of particles <25 µm postlaser ablation exceeded 99%. Lastly, the 355 nm laser successfully opened three types of plaques: chronically occluded, stent restenosis, and stale thrombosis.

3.
Biochem Pharmacol ; 222: 116073, 2024 Apr.
Article En | MEDLINE | ID: mdl-38395263

Stem cells from the apical papilla(SCAPs) exhibit remarkable tissue repair capabilities, demonstrate anti-inflammatory and pro-angiogenic effects, positioning them as promising assets in the realm of regenerative medicine. Recently, the focus has shifted towards exosomes derived from stem cells, perceived as safer alternatives while retaining comparable physiological functions. This study delves into the therapeutic implications of exosomes derived from SCAPs in the methionine-choline-deficient (MCD) diet-induced mice non-alcoholic steatohepatitis (NASH) model. We extracted exosomes from SCAPs. During the last two weeks of the MCD diet, mice were intravenously administered SCAPs-derived exosomes at two distinct concentrations (50 µg/mouse and 100 µg/mouse) biweekly. Thorough examinations of physiological and biochemical indicators were performed to meticulously evaluate the impact of exosomes derived from SCAPs on the advancement of NASH in mice induced by MCD diet. This findings revealed significant reductions in body weight loss and liver damage induced by the MCD diet following exosomes treatment. Moreover, hepatic fat accumulation was notably alleviated. Mechanistically, the treatment with exosomes led to an upregulation of phosphorylated adenosine monophosphate-activated protein kinase (p-AMPK) levels in the liver, enhancing hepatic fatty acid oxidation and transporter gene expression while inhibiting genes associated with fatty acid synthesis. Additionally, exosomes treatment increased the transcription levels of key liver mitochondrial marker proteins and the essential mitochondrial biogenesis factor. Furthermore, the levels of serum inflammatory factors and hepatic tissue inflammatory factor mRNA expression were significantly reduced, likely due to the anti-inflammatory phenotype induced by exosomes in macrophages. The above conclusion suggests that SCAPs-exosomes can improve NASH.


Choline Deficiency , Exosomes , Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Methionine/metabolism , Choline/metabolism , Lipid Metabolism , Exosomes/metabolism , Choline Deficiency/complications , Choline Deficiency/drug therapy , Choline Deficiency/metabolism , Liver/metabolism , Inflammation/metabolism , Racemethionine/metabolism , Racemethionine/pharmacology , Anti-Inflammatory Agents/pharmacology , Diet , Fatty Acids/metabolism , Mice, Inbred C57BL
4.
J Ethnopharmacol ; 321: 117540, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38056534

ETHNOPHARMACOLOGICAL RELEVANCE: Chimonanthus nitens Oliv. Leaf Granule (COG) is a commonly used clinical preparation of traditional Chinese medicine for the treatment of cold, but there are folk reports that it can treat diarrhea and other gastrointestinal diseases. Therefore, the mechanism of COG in the treatment of ulcerative colitis with diarrhea as the main symptom needs to be studied. AIM OF THE STUDY: Combined network pharmacology and experimental validation to explore the mechanism of COG in the treatment of ulcerative colitis. MATERIALS AND METHODS: First, the main components of COG were characterized by liquid chromatography-mass spectrometry (LC-MS); subsequently, a network pharmacology approach was used to screen the effective chemical components and action targets of COG to construct a target network of COG for the treatment of ulcerative colitis (UC). The protein-protein interaction network (PPI) and literature reports were combined to identify the potential targets of COG for the treatment of UC. Finally, the predicted results of network pharmacology were validated by animal and cellular experiments. RESULTS: 19 components of COG were characterized by LC-MS, among which 10 bioactive components could act on 377 potential targets of UC. Key therapeutic targets were collected, including SRC, HSP90AA1, PIK3RI, MAPK1 and ESR1. KEGG results are enriched in pathways related to oxidative stress. Molecular docking analysis showed good binding activity of main components and target genes. Animal experiments showed that COG significantly relieved the colitis symptoms in mice, regulated the Treg/Th17 balance, and promoted the secretion of IL-10 and IL-4, along with the inhibition of IL-1ß and TNF-α. Additionally, COG reduced the apoptosis of colon epithelial cells, and significantly improved the levels of SOD, MAO, GSH-px, and inhibited MDA, iNOS, eNOS in colon. Also, it increased the expression of tight junction proteins such as ZO-1, Claudin1, Occludin and E-cadherin. In vitro experiments, COG inhibited the oxidative stress and inflammatory injury of HCT116 cells induced by LPS. CONCLUSIONS: Combining network pharmacology and in vitro and in vivo experiments, COG was verified to have a good protective effect in UC, which may be related to enhancing antioxidation in colon tissues.


Calycanthaceae , Colitis, Ulcerative , Colitis , Drugs, Chinese Herbal , Animals , Mice , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Molecular Docking Simulation , Network Pharmacology , Diarrhea , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Dextran Sulfate
5.
World J Gastroenterol ; 29(45): 5988-6016, 2023 Dec 07.
Article En | MEDLINE | ID: mdl-38130997

BACKGROUND: Traditional Chinese medicine has used the drug Pien Tze Huang (PTH), a classic prescription, to treat autoimmune hepatitis (AIH). However, the precise mode of action is still unknown. AIM: To investigate the mechanism of PTH in an AIH mouse model by determining the changes in gut microbiota structure and memory regulatory T (mTreg) cells functional levels. METHODS: Following induction of the AIH mouse model induced by Concanavalin A (Con A), prophylactic administration of PTH was given for 10 d. The levels of mTreg cells were measured by flow cytometry, and intestinal microbiota was analyzed by 16S rRNA analysis, while western blotting was used to identify activation of the toll-like receptor (TLR)2, TLR4/nuclear factor-κB (NF-κB), and CXCL16/CXCR6 signaling pathways. RESULTS: In the liver of mice with AIH, PTH relieved the pathological damage and reduced the numbers of T helper type 17 cells and interferon-γ, tumor necrosis factor-alpha, interleukin (IL)-1ß, IL-2, IL-6, and IL-21 expression. Simultaneously, PTH stimulated the abundance of helpful bacteria, promoted activation of the TLR2 signal, which may enhance Treg/mTreg cells quantity to produce IL-10, and suppressed activation of the TLR4/NF-κB and CXCL16/CXCR6 signaling pathways. CONCLUSION: PTH regulates intestinal microbiota balance and restores mTreg cells to alleviate experimental AIH, which is closely related to the TLR/CXCL16/CXCR6/NF-κB signaling pathway.


Gastrointestinal Microbiome , Hepatitis A , Hepatitis, Autoimmune , Mice , Animals , Hepatitis, Autoimmune/drug therapy , Hepatitis, Autoimmune/etiology , Hepatitis, Autoimmune/prevention & control , NF-kappa B/metabolism , T-Lymphocytes, Regulatory/metabolism , Concanavalin A , Toll-Like Receptor 4/metabolism , RNA, Ribosomal, 16S
6.
World J Gastroenterol ; 29(36): 5226-5239, 2023 Sep 28.
Article En | MEDLINE | ID: mdl-37901446

BACKGROUND: Restoration of immune homeostasis by targeting the balance between memory T helper (mTh) cells and memory follicular T helper (mTfh) cells is a potential therapeutic strategy against ulcerative colitis (UC). Because of its anti-inflammatory and immunomodulatory properties, curcumin (Cur) is a promising drug for UC treatment. However, fewer studies have demonstrated whether Cur can modulate the mTh/mTfh subset balance in mice with colitis. AIM: To explore the potential mechanism underlying Cur-mediated alleviation of colitis induced by dextran sulfate sodium (DSS) in mice by regulating the mTh and mTfh immune homeostasis. METHODS: Balb/c mice were administered 3% and 2% DSS to establish the UC model and treated with Cur (200 mg/kg/d) by gavage on days 11-17. On the 18th d, all mice were anesthetized and euthanized, and the colonic length, colonic weight, and colonic weight index were evaluated. Histomorphological changes in the mouse colon were observed through hematoxylin-eosin staining. Levels of Th/mTh and Tfh/mTfh cell subsets in the spleen were detected through flow cytometry. Western blotting was performed to detect SOCS-1, SOCS-3, STAT3, p-STAT3, JAK1, p-JAK1, and NF-κB p65 protein expression levels in colon tissues. RESULTS: Cur effectively mitigates DSS-induced colitis, facilitates the restoration of mouse weight and colonic length, and diminishes the colonic weight and colonic weight index. Simultaneously, it hinders ulcer development and inflammatory cell infiltration in the colonic mucous membrane. While the percentage of Th1, mTh1, Th7, mTh7, Th17, mTh17, Tfh1, mTfh1, Tfh7, mTfh7, Tfh17, and mTfh17 cells decreased after Cur treatment of the mice for 7 d, and the frequency of mTh10, Th10, mTfh10, and Tfh10 cells in the mouse spleen increased. Further studies revealed that Cur administration prominently decreased the SOCS-1, SOCS-3, STAT3, p-STAT3, JAK1, p-JAK1, and NF-κB p65 protein expression levels in the colon tissue. CONCLUSION: Cur regulated the mTh/mTfh cell homeostasis to reduce DSS-induced colonic pathological damage, potentially by suppressing the JAK1/STAT3/SOCS signaling pathway.


Colitis, Ulcerative , Colitis , Curcumin , Animals , Mice , Dextran Sulfate/toxicity , Curcumin/pharmacology , Curcumin/therapeutic use , NF-kappa B/metabolism , Colitis/chemically induced , Colitis/drug therapy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colon/pathology , Disease Models, Animal , Mice, Inbred C57BL
7.
Circ Res ; 133(10): 810-825, 2023 10 27.
Article En | MEDLINE | ID: mdl-37800334

BACKGROUND: Dilated cardiomyopathy (DCM) is a major cause of heart failure and carries a high mortality rate. Myocardial recovery in DCM-related heart failure patients is highly variable, with some patients having little or no response to standard drug therapy. A genome-wide association study may agnostically identify biomarkers and provide novel insight into the biology of myocardial recovery in DCM. METHODS: A genome-wide association study for change in left ventricular ejection fraction was performed in 686 White subjects with recent-onset DCM who received standard pharmacotherapy. Genome-wide association study signals were subsequently functionally validated and studied in relevant cellular models to understand molecular mechanisms that may have contributed to the change in left ventricular ejection fraction. RESULTS: The genome-wide association study identified a highly suggestive locus that mapped to the 5'-flanking region of the CDCP1 (CUB [complement C1r/C1s, Uegf, and Bmp1] domain containing protein 1) gene (rs6773435; P=7.12×10-7). The variant allele was associated with improved cardiac function and decreased CDCP1 transcription. CDCP1 expression was significantly upregulated in human cardiac fibroblasts (HCFs) in response to the PDGF (platelet-derived growth factor) signaling, and knockdown of CDCP1 significantly repressed HCF proliferation and decreased AKT (protein kinase B) phosphorylation. Transcriptomic profiling after CDCP1 knockdown in HCFs supported the conclusion that CDCP1 regulates HCF proliferation and mitosis. In addition, CDCP1 knockdown in HCFs resulted in significantly decreased expression of soluble ST2 (suppression of tumorigenicity-2), a prognostic biomarker for heart failure and inductor of cardiac fibrosis. CONCLUSIONS: CDCP1 may play an important role in myocardial recovery in recent-onset DCM and mediates its effect primarily by attenuating cardiac fibrosis.


Cardiomyopathy, Dilated , Heart Failure , Humans , Cardiomyopathy, Dilated/metabolism , Stroke Volume , Genome-Wide Association Study , Ventricular Function, Left , Fibrosis , Antigens, Neoplasm/therapeutic use , Cell Adhesion Molecules/metabolism
8.
Sleep Med ; 112: 122-128, 2023 12.
Article En | MEDLINE | ID: mdl-37839273

BACKGROUND: Chronic insomnia disorder (CID) is frequently comorbid with depression, and both conditions are believed to involve disruptions in the reward network. However, the potential effects of genetic polymorphisms in modulating this network remain largely unexplored. METHODS: In this study, we recruited 50 CID patients with high (CID-HD) and low (CID-LD) depressive symptoms and assessed their reward networks using resting-state functional MRI. Additionally, we calculated the multilocus genetic profile score (MGPS) to examine the influence of depression and dopamine genetic variation on the nucleus accumbens functional connectivity (NAFC) network in CID patients. RESULTS: Although the MGPS did not show a significant difference between the two CID groups, its influence on the NAFC network was observed in the salience network (SN) and visual network (VN) in CID patients. When comparing CID-HD patients to CID-LD patients, we found that CID-HD patients exhibited decreased NAFC in the internal reward network, default mode network, SN, and sensorimotor network, while showing increased NAFC in the executive control network (ECN) and VN. Furthermore, the influence of MGPS on the reward network was only significant in CID-HD patients, specifically in the internal reward network and ECN. CONCLUSION: These findings suggest that genetic variations related to dopamine may modulate the reward network differently in CID patients with and without depressive symptoms. These results contribute to our understanding of the pathophysiology of polygenic effects underlying brain network abnormalities in CID patients with depression.


Depression , Sleep Initiation and Maintenance Disorders , Humans , Depression/genetics , Brain Mapping , Dopamine , Sleep Initiation and Maintenance Disorders/diagnostic imaging , Sleep Initiation and Maintenance Disorders/genetics , Genetic Profile , Reward , Magnetic Resonance Imaging/methods , Brain
9.
Angew Chem Int Ed Engl ; 62(44): e202313122, 2023 Oct 26.
Article En | MEDLINE | ID: mdl-37707123

The regioselectivity of C-H functionalization is commonly achieved by directing groups, electronic factors, or steric hindrance, which facilitate the identification of reaction sites. However, such strategies are less effective for reactants such as simple monofluoroarenes due to their relatively low reactivity and the modest steric demands of the fluorine atom. Herein, we present an undirected gold-catalyzed para-C-H arylation of a wide array of monofluoroarenes using air-stable aryl silanes and germanes at room temperature. A high para-regioselectivity (up to 98 : 2) can be realized by utilizing a dinuclear dppm(AuOTs)2 (dppm=bis(diphenylphosphino)methane) as the catalyst and hexafluorobenzene as the solvent. This provides a general and practical protocol for the concise construction of structurally diverse para-arylated monofluoroarenes through C-H activation manner. It features excellent functional group tolerance and a broad substrate scope (>80 examples). Besides, this strategy is also robust for other simple monosubstituted arenes and heteroarenes. Our mechanistic studies and theoretical calculations suggest that para-C-H selectivity arises from highly electrophilic and structurally flexible dinuclear Ar-Au(III)-Au(I) species, coupled with noncovalent interaction induced by hexafluorobenzene.

10.
Circ Heart Fail ; 16(9): e010262, 2023 09.
Article En | MEDLINE | ID: mdl-37526028

BACKGROUND: Common genetic variants are associated with risk for hypertrophic cardiomyopathy and dilated cardiomyopathy and with left ventricular (LV) traits. Whether these variants are associated with myocardial fibrosis, an important pathophysiological mediator of cardiomyopathy, is unknown. METHODS: Multi-Ethnic Study of Atherosclerosis participants with T1-mapping cardiac magnetic resonance imaging in-whom extracellular volume was assessed, and genotyping information was available were included (N=1255). Log extracellular volume (%) was regressed on 50 candidate single nucleotide polymorphisms (previously identified to be associated with hypertrophic cardiomyopathy, dilated cardiomyopathy, and LV traits) adjusting for age, sex, diabetes, blood pressure, and principal components of ancestry. Ancestry-specific results were pooled by fixed-effect meta-analyses. Gene knockdown experiments were performed in human cardiac fibroblasts. RESULTS: The SMARCB1 rs2186370 intronic variant (minor allele frequency: 0.18 in White and 0.50 in Black participants), previously identified as a risk variant for dilated cardiomyopathy and hypertrophic cardiomyopathy, was significantly associated with increased extracellular volume (P=0.0002) after adjusting for confounding clinical variables. The SMARCB1 rs2070458 locus previously associated with increased LV wall thickness and mass was similarly significantly associated with increased extracellular volume (P=0.0002). The direction of effect was similar in all 4 ancestry groups, but the effect was strongest in Black participants. The variants are strong expression quantitative loci in human LV tissue and associated with genotype-dependent decreased expression of SMARCB1 (P=7.3×10-22). SMARCB1 knockdown in human cardiac fibroblasts resulted in increased TGF (transforming growth factor)-ß1-mediated α-smooth muscle actin and collagen expression. CONCLUSIONS: Common genetic variation in SMARCB1 previously associated with risk for cardiomyopathies and increased LV wall thickness is associated with increased cardiac magnetic resonance imaging-based myocardial fibrosis and increased TGF-ß1 mediated myocardial fibrosis in vitro. Whether these findings suggest a pathophysiologic link between myocardial fibrosis and cardiomyopathy risk remains to be proven.


Cardiomyopathies , Cardiomyopathy, Dilated , Cardiomyopathy, Hypertrophic , Heart Failure , Humans , Cardiomyopathy, Dilated/pathology , Magnetic Resonance Imaging, Cine , Heart Failure/pathology , Cardiomyopathies/genetics , Cardiomyopathies/pathology , Myocardium/pathology , Cardiomyopathy, Hypertrophic/genetics , Fibrosis , Contrast Media , Ventricular Function, Left
12.
J Gerontol B Psychol Sci Soc Sci ; 78(9): 1474-1483, 2023 08 28.
Article En | MEDLINE | ID: mdl-37216647

OBJECTIVES: Motor imagery has been used to investigate the cognitive mechanism of motor control. Although behavioral and electrophysiological changes in motor imagery in people with amnestic mild cognitive impairment (aMCI) have been reported, deficits in different types of imagery remain unclear. To explore this question, we used electroencephalography (EEG) to study neural correlates of visual imagery (VI) and kinesthetic imagery (KI) and their relationship to cognitive function in people with aMCI. METHODS: A hand laterality judgment task was used to induce implicit motor imagery in 29 people with aMCI and 40 healthy controls during EEG recording. Mass univariate and multivariate EEG analysis was applied to explore group differences in a data-driven manner. RESULTS: Modulation of stimuli orientation to event-related potential (ERP) amplitudes differed significantly between groups at 2 clusters located in the posterior-parietal and frontal areas. Multivariate decoding revealed sufficient representation of VI-related orientation features in both groups. Relative to healthy controls, the aMCI group lacked accurate representation of KI-related biomechanical features, suggesting deficits in automatic activation of KI strategy. Electrophysiological correlates were associated with episodic memory, visuospatial function, and executive function. Higher decoding accuracy of biomechanical features predicted better executive function via longer response time in the imagery task in the aMCI group. DISCUSSION: These findings reveal electrophysiological correlates related to motor imagery deficits in aMCI, including local ERP amplitudes and large-scale activity patterns. Alterations in EEG activity are related to cognitive function in multiple domains, including episodic memory, suggesting the potential of these EEG indices as biomarkers of cognitive impairment.


Cognitive Dysfunction , Electroencephalography , Humans , Cognitive Dysfunction/psychology , Cognition , Executive Function , Evoked Potentials/physiology , Neuropsychological Tests
13.
Brain Res ; 1809: 148356, 2023 06 15.
Article En | MEDLINE | ID: mdl-37003560

Fentanyl is widely used for anesthesia and analgesia in cancer patients. Recent studies have revealed its anti-growth effect in several categories of cancer. Gliomas are the most common primary tumors in the central nervous system with poor prognosis. To investigate the effects of fentanyl on gliomas, glioma cells were treated with different concentrations of fentanyl both in vitro and in vivo. Consequences of proliferation and invasive phenotypes, and related protein expression were evaluated in two human glioma cell lines (U251 and U87). Naloxone, Mu Opioid Receptor (MOR) antagonist, was introduced into culture media to assess the involvement of MOR in Fentanyl-mediated changes. When compared with control group, it could be found that Fentanyl inhibited function of glioma cells only at high concentrations. Western blot and immunofluorescence results revealed that Fentanyl exerted its action via modulating NF-κB (P65) activation which is likely independent of MOR. Moreover, overexpression of P65 by transfection P65-expressing vector restored the invasion and migration of glioma cells, which were inhibited by Fentanyl. In summary, this study showed that opioid pain medication Fentanyl was capable of decreasing invasiveness of glioma cells at a high concentration both in vitro and in vivo, likely via modulating P65 activation.


Brain Neoplasms , Glioma , Humans , NF-kappa B/metabolism , Fentanyl/pharmacology , Glioma/metabolism , Signal Transduction , Narcotic Antagonists/pharmacology , Cell Line, Tumor , Cell Movement , Cell Proliferation , Neoplasm Invasiveness/genetics , Brain Neoplasms/metabolism
14.
Opt Express ; 31(5): 8561-8574, 2023 Feb 27.
Article En | MEDLINE | ID: mdl-36859968

With the development of remote sensing technology, true-color visualization of hyperspectral LiDAR echo signals has become a hotspot for both academic research and commercial applications. The limitation of the emission power of hyperspectral LiDAR causes the loss of spectral-reflectance information in some channels of the hyperspectral LiDAR echo signal. The color reconstructed based on the hyperspectral LiDAR echo signal is bound to have serious color cast problem. To solve the existing problem, a spectral missing color correction approach based on adaptive parameter fitting model is proposed in this study. Given the known missing spectral-reflectance band intervals, the colors in incomplete spectral integration are corrected to accurately restore target colors. Based on the experimental results, the color difference between color blocks and the hyperspectral image corrected by the proposed color correction model is smaller than that of the ground truth, and the image quality is higher, realizing the accurate reproduction of the target color.

15.
Cell Cycle ; 22(5): 596-609, 2023 03.
Article En | MEDLINE | ID: mdl-36412985

This study is designed to explore the role of long non-coding RNAs (lncRNAs) NCK1-AS1 in proliferative and invasive activities of esophageal squamous cell carcinoma (ESCC) cells by binding to microRNA-133b (miR-133b) to regulate ENPEP. Differentially expressed lncRNAs, miRs, genes and their targeting relationships were screened on ESCC-related gene expression datasets GSE17351 and GSE6188. The targeting relationships among NCK1-AS1, miR-133b, and ENPEP were verified using functional assays. Loss- and gain- of function assays were carried out to examine the roles of NCK1-AS1, miR-133b, and ENPEP in ESCC cell proliferative, invasive, migrative and apoptotic abilities as well as tumorigenesis in vivo. Elevated NCK1-AS1 and ENPEP but reduced miR-133b expression were found in ESCC. NCK1-AS1 knockdown or miR-133b overexpression inhibited the malignant properties of ESCC cells as well as tumorigenesis in vivo. NCK1-AS1 regulated the ENPEP expression by competitively binding to miR-133b. ENPEP overexpression reversed inhibition of NCK1-AS1 knockdown on the function of ESCC cells. This study provides evidence that silencing NCK1-AS1 inhibits expression of ENPEP by sponging miR-133b, thereby suppressing ESCC.


Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , MicroRNAs , RNA, Long Noncoding , Humans , Esophageal Squamous Cell Carcinoma/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Esophageal Neoplasms/metabolism , Cell Survival/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Carcinogenesis/genetics , Gene Expression Regulation, Neoplastic/genetics , Cell Movement/genetics
16.
Drug Metab Dispos ; 51(1): 1-7, 2023 01.
Article En | MEDLINE | ID: mdl-36153008

Cytochrome P450s (CYPs) display significant inter-individual variation in expression, much of which remains unexplained by known CYP single-nucleotide polymorphisms (SNPs). Testis-specific Y-encoded-like proteins (TSPYLs) are transcriptional regulators for several drug-metabolizing CYPs including CYP3A4 However, transcription factors (TFs) that might influence CYP expression through an effect on TSPYL expression are unknown. Therefore, we studied regulators of TSPYL expression in hepatic cell lines and their possible SNP-dependent variation. Specifically, we identified candidate TFs that might influence TSPYL expression using the ENCODE ChIPseq database. Subsequently, the expression of TSPYL1/2/4 as well as that of selected CYP targets for TSPYL regulation were assayed in hepatic cell lines before and after knockdown of TFs that might influence CYP expression through TSPYL-dependent mechanisms. Those results were confirmed by studies of TF binding to TSPYL1/2/4 gene promoter regions. In hepatic cell lines, knockdown of the REST and ZBTB7A TFs resulted in decreased TSPYL1 and TSPYL4 expression and increased CYP3A4 expression, changes reversed by TSPYL1/4 overexpression. Potential binding sites for REST and ZBTB7A on the promoters of TSPYL1 and TSPYL4 were confirmed by chromatin immunoprecipitation. Finally, common SNP variants in upstream binding sites on the TSPYL1/4 promoters were identified and luciferase reporter constructs confirmed SNP-dependent modulation of TSPYL1/4 gene transcription. In summary, we identified REST and ZBTB7A as regulators of the expression of TSPYL genes which themselves can contribute to regulation of CYP expression and-potentially-of drug metabolism. SNP-dependent modulation of TSPYL transcription may contribute to individual variation in both CYP expression and-downstream-drug response phenotypes. SIGNIFICANCE STATEMENT: Testis-specific Y-encoded-like proteins (TSPYLs) are transcriptional regulators of cytochrome P450 (CYP) gene expression. Here, we report that variation in TSPYL expression as a result of the effects of genetically regulated TSPYL transcription factors is an additional factor that could result in downstream variation in CYP expression and potentially, as a result, variation in drug biotransformation.


DNA-Binding Proteins , Transcription Factors , Male , Animals , Transcription Factors/genetics , DNA-Binding Proteins/genetics , Cytochrome P-450 CYP3A/genetics , Testis , Cell Line, Tumor , Cytochrome P-450 Enzyme System/genetics
17.
Journal of Chinese Physician ; (12): 532-536, 2023.
Article Zh | WPRIM | ID: wpr-992336

Objective:To evaluate the efficacy and safety of small incision surgery combined with multi-point skin fixation in the treatment of axillary osmidrosis.Methods:104 patients with axillary osmidrosis who were treated in the dermatology department of the Third Hospital of Changsha from January 2017 to December 2020 were retrospectively analyzed. They were divided into the observation group (56 cases) and the control group (48 cases). Both groups were treated with small incision pruning combined with porous drainage. On this basis, the observation group was treated with multi-point skin fixation gauze compression bandage, while the control group was treated with conventional gauze stacking compression bandage. The efficacy, satisfaction, postoperative wound healing time and complication rate of the two groups were compared.Results:The effective rate of the observation group and the control group were 96.43%(54/56) and 95.83%(46/48) respectively, with no significant difference ( P>0.05). Compared with preoperative, the Visual Analogue Scale (VAS) score of patients in the two groups was significantly lower after operation, and the difference was statistically significant (both P<0.05). The satisfaction of patients in the observation group was higher than that in the control group [(4.05±1.15)points vs (3.19±1.00)points], and the difference was statistically significant ( t=4.10, P<0.05). The wound healing time in the observation group was shorter than that in the control group, and the incidence of complications was lower than that in the control group, with statistically significant difference (all P<0.05). Conclusions:Small incision surgery combined with multi-point skin fixation for the treatment of axillary osmidrosis has good curative effect, short postoperative wound healing time and fewer complications, and improved patient satisfaction, which can be popularized in clinical application.

18.
World J Gastroenterol ; 28(43): 6131-6156, 2022 Nov 21.
Article En | MEDLINE | ID: mdl-36483153

BACKGROUND: Studies have shown that a high-fat diet (HFD) can alter gut microbiota (GM) homeostasis and participate in lipid metabolism disorders associated with obesity. Therefore, regulating the construction of GM with the balance of lipid metabolism has become essential for treating obesity. Salvia miltiorrhiza extract (Sal), a common traditional Chinese medicine, has been proven effective against atherosclerosis, hyperlipidemia, obesity, and other dyslipidemia-related diseases. AIM: To investigate the anti-obesity effects of Sal in rats with HFD-induced obesity, and explore the underlying mechanism by focusing on GM and lipid metabolism. METHODS: Obesity was induced in rats with an HFD for 7 wk, and Sal (0.675 g/1.35 g/2.70 g/kg/d) was administered to treat obese rats for 8 wk. The therapeutic effect was evaluated by body weight, body fat index, waistline, and serum lipid level. Lipid factors (cAMP, PKA, and HSL) in liver and fat homogenates were analyzed by ELISA. The effect of Sal on GM and lipid metabolism was assessed by 16S rRNA-based microbiota analysis and untargeted lipidomic analysis (LC-MS/MS), respectively. RESULTS: Sal treatment markedly reduced weight, body fat index, serum triglycerides (TG), total cholesterol (TC), low-density lipoprotein, glucose, free fatty acid, hepatic lipid accumulation, and adipocyte vacuolation, and increased serum high-density lipoprotein (HDL-C) in rats with HFD-induced obesity. These effects were associated with increased concentrations of lipid factors such as cAMP, PKA, and HSL in the liver and adipose tissues, enhanced gut integrity, and improved lipid metabolism. GM analysis revealed that Sal could reverse HFD-induced dysbacteriosis by promoting the abundance of Actinobacteriota and Proteobacteria, and decreasing the growth of Firmicutes and Desulfobacterita. Furthermore, LC-MS/MS analysis indicated that Sal decreased TGs (TG18:2/18:2/20:4, TG16:0/18:2/22:6), DGs (DG14:0/22:6, DG22:6/22:6), CL (18:2/ 18:1/18:1/20:0), and increased ceramides (Cers; Cer d16:0/21:0, Cer d16:1/24:1), (O-acyl)-ω-hydroxy fatty acids (OAHFAs; OAHFA18:0/14:0) in the feces of rats. Spearman's correlation analysis further indicated that TGs, DGs, and CL were negatively related to the abundance of Facklamia and Dubosiella, and positively correlated with Blautia and Quinella, while OAHFAs and Cers were the opposite. CONCLUSION: Sal has an anti-obesity effect by regulating the GM and lipid metabolism.


Diet, High-Fat , Salvia miltiorrhiza , Rats , Animals , Diet, High-Fat/adverse effects , Lipid Metabolism , RNA, Ribosomal, 16S , Chromatography, Liquid , Tandem Mass Spectrometry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Lipids
19.
Phys Rev Lett ; 129(21): 210501, 2022 Nov 18.
Article En | MEDLINE | ID: mdl-36461974

Quantum memories at telecom wavelengths are crucial for the construction of large-scale quantum networks based on existing fiber networks. On-demand storage of telecom photonic qubits is an essential request for such networking applications but yet to be demonstrated. Here we demonstrate the storage and on-demand retrieval of telecom photonic qubits using a laser-written waveguide fabricated in an ^{167}Er^{3+}:Y_{2}SiO_{5} crystal. Both ends of the waveguide memory are directly connected with fiber arrays with a fiber-to-fiber efficiency of 51%. Storage fidelity of 98.3(1)% can be obtained for time-bin qubits encoded with single-photon-level coherent pulses, which is far beyond the maximal fidelity that can be achieved with a classical measure and prepared strategy. This device features high reliability and easy scalability, and it can be directly integrated into fiber networks, which could play an essential role in fiber-based quantum networks.

20.
Front Pharmacol ; 13: 1047318, 2022.
Article En | MEDLINE | ID: mdl-36518674

The cytochromes P450 (CYPs) represent a large gene superfamily that plays an important role in the metabolism of both exogenous and endogenous compounds. We have reported that the testis-specific Y-encoded-like proteins (TSPYLs) are novel CYP gene transcriptional regulators. However, little is known of mechanism(s) by which TSPYLs regulate CYP expression or the functional consequences of that regulation. The TSPYL gene family includes six members, TSPYL1 to TSPYL6. However, TSPYL3 is a pseudogene, TSPYL5 is only known to regulates the expression of CYP19A1, and TSPYL6 is expressed exclusively in the testis. Therefore, TSPYL 1, 2 and 4 were included in the present study. To better understand how TSPYL1, 2, and 4 might influence CYP expression, we performed a series of pull-downs and mass spectrometric analyses. Panther pathway analysis of the 2272 pulled down proteins for all 3 TSPYL isoforms showed that the top five pathways were the Wnt signaling pathway, the Integrin signaling pathway, the Gonadotropin releasing hormone receptor pathway, the Angiogenesis pathway and Inflammation mediated by chemokines and cytokines. Specifically, we observed that 177 Wnt signaling pathway proteins were pulled down with the TSPYLs. Subsequent luciferase assays showed that TSPYL1 knockdown had a greater effect on the activation of Wnt signaling than did TSPYL2 or TSPYL4 knockdown. Therefore, in subsequent experiments, we focused our attention on TSPYL1. HepaRG cell qRT-PCR showed that TSPYL1 regulated the expression of CYPs involved in cholesterol-metabolism such as CYP1B1 and CYP7A1. Furthermore, TSPYL1 and ß-catenin regulated CYP1B1 expression in opposite directions and TSPYL1 appeared to regulate CYP1B1 expression by blocking ß-catenin binding to the TCF7L2 transcription factor on the CYP1B1 promoter. In ß-catenin and TSPYL1 double knockdown cells, CYP1B1 expression and the generation of CYP1B1 downstream metabolites such as 20-HETE could be restored. Finally, we observed that TSPYL1 expression was associated with plasma cholesterol levels and BMI during previous clinical studies of obesity. In conclusion, this series of experiments has revealed a novel mechanism for regulation of the expression of cholesterol-metabolizing CYPs, particularly CYP1B1, by TSPYL1 via Wnt/ß-catenin signaling, raising the possibility that TSPYL1 might represent a molecular target for influencing cholesterol homeostasis.

...