Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros










Intervalo de año de publicación
1.
J Chromatogr A ; 1730: 465159, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39025022

RESUMEN

Based on the adhesion of polyethyleneimine (PEI), a novel PEI/zein co-modified core-shell stationary phase (PEI/Zein@SiO2) was prepared by doping zein to form a composite modification layer. The stationary phase achieved effective separation of nucleosides, bases and antibiotics in hydrophilic interaction mode on account of the hydrophilic groups of composite coating. With the hydrophobicity of zein, the flavones could be separated in reversed-phase mode. In short, the separation and analysis of hydrophilic/hydrophobic compounds were accomplished excellently by the PEI/Zein@SiO2 column with mixed double mode. The prepared chromatographic stationary phase not only avoided the dissolution of zein, but also covered the strong adsorption of some analytes caused by silica hydroxyl groups on the surface of silica spheres. The morphological structure and specific surface area of the material were reflected by various characterization techniques. Hydrophilic/hydrophobic compounds were used as tested analytes to research separation performance and retention mechanisms of PEI/Zein@SiO2 column. The stability and reproducibility of the PEI/Zein@SiO2 stationary phase were satisfied. Therefore, the modification of zein could improve the separation selectivity of stationary phase effectively for complex samples, which had the potential to be one of the significant potential application materials in stationary phase packing.


Asunto(s)
Interacciones Hidrofóbicas e Hidrofílicas , Polietileneimina , Dióxido de Silicio , Zeína , Zeína/química , Cromatografía Líquida de Alta Presión/métodos , Polietileneimina/química , Dióxido de Silicio/química , Adsorción , Reproducibilidad de los Resultados
2.
Adv Healthc Mater ; : e2401067, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030869

RESUMEN

Bacteria-derived hydrogen sulfide (H2S) often contributes to the emergence of antibiotic-recalcitrant bacteria, especially persister (a sub-population of dormant bacteria), thus causing the treatment failure of Catheter-associated urinary tract infection (CAUTI). Here, an H2S harvester nanosystem to prevent the generation of persister bacteria and disrupt the dense biofilm matrix by the self-adaptive ability of shape-morphing is prepared. The nanosystem possesses a core-shell structure that is composed of liquid metal nanoparticle (LM NP), AgNPs, and immobilized urease. The nanosystem decomposes urea contained in urine to generate ammonia for eliminating bacteria-derived H2S. Depending on the oxidative layer of liquid metal, the nanosystem also constitutes a long-lasting reservoir for temporarily storing bacteria-derived H2S, when urease transiently overloads or in the absence of urine in a catheter. Depriving H2S can prevent the emergence of persistent bacteria, enhancing the bacteria-killing efficiency of Ga3+ and Ag+ ions. Even when the biofilm has formed, the urine flow provides heat to trigger shape morphing of the LM NP, tearing the biofilm matrix. Collectively, this strategy can turn trash (urea) into treasure (H2S scavengers and biofilm rippers), and provides a new direction for the antibacterial materials application in the medical field.

3.
Front Microbiol ; 15: 1348758, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38894973

RESUMEN

A rich diversity of radiation-resistant (Rr) and desiccation-resistant (Dr) bacteria has been found in arid habitats of the world. Evidence from scientific research has linked their origin to reactive oxygen species (ROS) intermediates. Rr and Dr. bacteria of arid regions have the potential to regulate imbalance radicals and evade a higher dose of radiation and oxidation than bacterial species of non-arid regions. Photochemical-activated ROS in Rr bacteria is run through photo-induction of electron transfer. A hypothetical model of the biogeochemical cycle based on solar radiation and desiccation. These selective stresses generate oxidative radicals for a short span with strong reactivity and toxic effects. Desert-inhibiting Rr bacteria efficiently evade ROS toxicity with an evolved antioxidant system and other defensive pathways. The imbalanced radicals in physiological disorders, cancer, and lung diseases could be neutralized by a self-sustaining evolved Rr bacteria antioxidant system. The direct link of evolved antioxidant system with intermediate ROS and indirect influence of radiation and desiccation provide useful insight into richness, ecological diversity, and origin of Rr bacteria capabilities. The distinguishing features of Rr bacteria in deserts present a fertile research area with promising applications in the pharmaceutical industry, genetic engineering, biological therapy, biological transformation, bioremediation, industrial biotechnology, and astrobiology.

4.
Sci Total Environ ; 945: 173937, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38880135

RESUMEN

Glaciers, which constitute the world's largest global freshwater reservoir, are also natural microbial repositories. The frequent pandemic in recent years underscored the potential biosafety risks associated with the release of microorganisms from the accelerated melting of glaciers due to global warming. However, the characteristics of pathogenic microorganisms in glaciers are not well understood. The glacier surface is the primary area where glacier melting occurs that is often the main subject of research on the dynamics of pathogenic microbial communities in efforts to assess glacier biosafety risks and devise preventive measures. In this study, high-throughput sequencing and quantitative polymerase chain reaction methods were employed in analyses of the composition and quantities of potential pathogenic bacteria on the surfaces of glaciers in the southeastern Tibetan Plateau. The study identified 441 potential pathogenic species ranging from 215 to 4.39 × 1011 copies/g, with notable seasonal and environmental variations being found in the composition and quantity of potential pathogens. The highest level of diversity was observed in April and snow, while the highest quantities were observed in October and cryoconite. Host analysis revealed that >70 % of the species were pathogens affecting animals, with the highest proportion of zoonotic pathogens being observed in April. Analysis of aerosols and glacial meltwater dispersion suggested that these microbes originated from West Asia, primarily affecting the central and southern regions of China. Null model analysis indicated that the assembly of potential pathogenic microbial communities on glacier surfaces was largely governed by deterministic processes. In conclusion, potential pathogenic bacteria on glacier surfaces mainly originated from the snow and exhibited significant temporal and spatial variation patterns. These findings can be used to enhance researchers' ability to predict potential biosafety risks associated with pathogenic bacteria in glaciers and to prevent their negative impact on populations and ecological systems.


Asunto(s)
Bacterias , Cubierta de Hielo , Cubierta de Hielo/microbiología , Tibet , Bacterias/aislamiento & purificación , Bacterias/clasificación , Bacterias/genética , Monitoreo del Ambiente , Biodiversidad
5.
Environ Int ; 186: 108611, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38603812

RESUMEN

Research has shown that forest management can improve the post-drought growth and resilience of Qinghai spruce in the eastern Qilian Mountains, located on the northeastern Tibetan Plateau. However, the impact of such management on the tree-associated phyllosphere microbiome is not yet fully understood. This study provides new evidence of positive forest management effects on the phyllosphere microbiome after extreme drought, from the perspectives of community diversity, structure, network inference, keystone species, and assembly processes. In managed Qinghai spruce forest, the α-diversity of the phyllosphere bacterial communities increased, whereas the ß-diversity decreased. In addition, the phyllosphere bacterial community became more stable and resistant, yet less complex, following forest management. Keystone species inferred from a bacterial network also changed under forest management. Furthermore, forest management mediated changes in community assembly processes, intensifying the influence of determinacy, while diminishing that of stochasticity. These findings support the hypothesis that management can re-assemble the phyllosphere bacterial community, enhance community stability, and ultimately improve tree growth. Overall, the study highlights the importance of forest management on the phyllosphere microbiome and furnishes new insights into forest conservation from the perspective of managing microbial processes and effects.


Asunto(s)
Bacterias , Bosques , Microbiota , Bacterias/clasificación , Agricultura Forestal/métodos , Árboles/microbiología , Picea/microbiología , Biodiversidad , Sequías , Conservación de los Recursos Naturales/métodos
6.
J Microbiol ; 62(4): 277-284, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38446393

RESUMEN

We isolated and analyzed a novel, Gram-stain-positive, aerobic, rod-shaped, non-motile actinobacterium, designated as strain ZFBP1038T, from rock sampled on the north slope of Mount Everest. The growth requirements of this strain were 10-37 °C, pH 4-10, and 0-6% (w/v) NaCl. The sole respiratory quinone was MK-9, and the major fatty acids were anteiso-C15:0 and iso-C17:0. Peptidoglycan containing meso-diaminopimelic acid, ribose, and glucose were the major cell wall sugars, while polar lipids included diphosphatidyl glycerol, phosphatidyl glycerol, an unidentified phospholipid, and an unidentified glycolipid. A phylogenetic analysis based on 16S rRNA gene sequences showed that strain ZFBP1038T has the highest similarity with Spelaeicoccus albus DSM 26341 T (96.02%). ZFBP1038T formed a distinct monophyletic clade within the family Brevibacteriaceae and was distantly related to the genus Spelaeicoccus. The G + C content of strain ZFBP1038T was 63.65 mol% and the genome size was 4.05 Mb. Digital DNA-DNA hybridization, average nucleotide identity, and average amino acid identity values between the genomes of strain ZFBP1038T and representative reference strains were 19.3-25.2, 68.0-71.0, and 52.8-60.1%, respectively. Phylogenetic, phenotypic, and chemotaxonomic characteristics as well as comparative genome analyses suggested that strain ZFBP1038T represents a novel species of a new genus, for which the name Saxibacter gen. nov., sp. nov. was assigned with the type strain Saxibacter everestensis ZFBP1038T (= EE 014 T = GDMCC 1.3024 T = JCM 35335 T).


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Filogenia , ARN Ribosómico 16S , ARN Ribosómico 16S/genética , Ácidos Grasos/análisis , ADN Bacteriano/genética , Peptidoglicano/análisis , Peptidoglicano/química , Análisis de Secuencia de ADN , Fosfolípidos/análisis , Vitamina K 2/análisis , Vitamina K 2/análogos & derivados , Genoma Bacteriano , Hibridación de Ácido Nucleico , Pared Celular/química
7.
Microorganisms ; 11(12)2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38138015

RESUMEN

Glaciers retreating due to global warming create important new habitats, particularly suitable for studying ecosystem development where nitrogen is a limiting factor. Nitrogen availability mainly results from microbial decomposition and transformation processes, including nitrification. AOA and AOB perform the first and rate-limiting step of nitrification. Investigating the abundance and diversity of AOA and AOB is essential for understanding early ecosystem development. The dynamics of AOA and AOB community structure along a soil chronosequence in Tianshan No. 1 Glacier foreland were analyzed using qPCR and clone library methods. The results consistently showed low quantities of both AOA and AOB throughout the chronosequence. Initially, the copy numbers of AOB were higher than those of AOA, but they decreased in later stages. The AOB community was dominated by "Nitrosospira cluster ME", while the AOA community was dominated by "the soil and sediment 1". Both communities were potentially connected to supra- and subglacial microbial communities during early stages. Correlation analysis revealed a significant positive correlation between the ratios of AOA and AOB with soil ammonium and total nitrogen levels. These results suggest that variations in abundance and diversity of AOA and AOB along the chronosequences were influenced by ammonium availability during glacier retreat.

8.
Antonie Van Leeuwenhoek ; 117(1): 5, 2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38153511

RESUMEN

Gram-stain-negative, aerobic, rod-shaped, non-motile bacterium strain ZFBP2030T was isolated from a rock on the North slope of Mount Everest. This strain contained a unique ubiquinone-10 (Q-10) as a predominant respiratory quinone. Among the tested fatty acids, the strain contained summed feature 8, C14:0 2OH, and C16:0, as major cellular fatty acids. The polar lipid profile contained phosphatidyl glycerol, phosphatidyl ethanolamine, three unidentified phospholipids, two unidentified aminolipids, and six unidentified lipids. The cell-wall peptidoglycan was a meso-diaminopimelic acid, and cell-wall sugars were ribose and galactose. Phylogenetic analyses based on 16S rRNA gene sequence revealed that strain ZFBP2030T was a member of the genus Sphingomonas, exhibiting high sequence similarity to the 16S rRNA gene sequences of Sphingomonas aliaeris DH-S5T (97.9%), Sphingomonas alpina DSM 22537T (97.3%) and Sphingomonas hylomeconis CCTCC AB 2013304T (97.0%). The 16S rRNA gene sequence similarity between ZFBP2030T and other typical strains was less than 97.0%. The average amino acid identity values, average nucleotide identity, and digital DNA-DNA hybridization values between strain ZFBP2030T and its highest sequence similarity strains were 56.9-79.9%, 65.1-82.2%, and 19.3-25.8%, respectively. The whole-genome size of the novel strain ZFBP2030T was 4.1 Mbp, annotated with 3838 protein-coding genes and 54 RNA genes. Moreover, DNA G + C content was 64.7 mol%. Stress-related functions predicted in the subsystem classification of the strain ZFBP2030T genome included osmotic, oxidative, cold/heat shock, detoxification, and periplasmic stress responses. The overall results of this study clearly showed that strain ZFBP2030T is a novel species of the genus Sphingomonas, for which the name Sphingomonas endolithica sp. nov. is proposed. The type of strain is ZFBP2030T (= EE 013T = GDMCC 1.3123T = JCM 35386T).


Asunto(s)
Sphingomonas , Filogenia , ARN Ribosómico 16S/genética , Sphingomonas/genética , Genómica , Bacterias , Ácidos Grasos , ADN
9.
Molecules ; 28(21)2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37959852

RESUMEN

Nocardioides, a genus belonging to Actinomycetes, can endure various low-nutrient conditions. It can degrade pollutants using multiple organic materials such as carbon and nitrogen sources. The characteristics and applications of Nocardioides are described in detail in this review, with emphasis on the degradation of several hard-to-degrade pollutants by using Nocardioides, including aromatic compounds, hydrocarbons, haloalkanes, nitrogen heterocycles, and polymeric polyesters. Nocardioides has unique advantages when it comes to hard-to-degrade pollutants. Compared to other strains, Nocardioides has a significantly higher degradation rate and requires less time to break down substances. This review can be a theoretical basis for developing Nocardioides as a microbial agent with significant commercial and application potential.


Asunto(s)
Actinobacteria , Contaminantes Ambientales , Contaminantes del Suelo , Nocardioides , Biodegradación Ambiental , Nitrógeno
10.
Antonie Van Leeuwenhoek ; 116(12): 1407-1419, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37847451

RESUMEN

A novel Streptomyces strain, designated 3_2T, was isolated from soil under the black Gobi rock sample of Northwest China. The taxonomic position of this strain was revealed by a polyphasic approach. Comparative analysis of the 16S rRNA gene sequences indicated that 3_2T was closely related to the members of the genus Streptomyces, with the highest similarity to Streptomyces rimosus subsp. rimosus CGMCC 4.1438 (99.17%), Streptomyces sioyaensis DSM 40032 (98.97%). Strain 3_2T can grow in media up to 13% NaCl. The genomic DNA G + C content of strain 3_2T was 69.9%. We obtained the genomes of 22 Streptomyces strains similar to strain 3_2T, compared the average nucleotide similarity, dDDH and average amino acid identity, and found that the genomic similarity of the new isolate 3_2T to all strains was below the threshold for interspecies classification. Chemotaxonomic data revealed that strain 3_2T possessed MK-9 (H6) and MK-9 (H8) as the major menaquinones. The cell wall contained LL-diaminopimelic acid (LL-DAP) and the whole-cell sugars were ribose and glucose. The major fatty acid methyl esters were iso-C16:0 (23.6%) and anteiso-C15:0 (10.4%). The fermentation products of strain 3_2T were inhibitory to Staphylococcus aureus and Bacillus thuringiensi. The genome of 3_2T was further predicted using anti-smash and the strain was found to encode the production of 41 secondary metabolites, and these gene clusters may be key to the good inhibitory activity exhibited by the strain. Genomic analysis revealed that strain 3_2T can encode genes that produce a variety of genes in response to environmental stresses, including cold shock, detoxification, heat shock, osmotic stress, oxidative stress, and these genes may play a key role in the harsh environment in which the strain can survive. Therefore, this strain represents a novel Streptomyces species, for which the name Streptomyces halobius sp. nov. is proposed. The type strain is 3_2T (= JCM 34935T = GDMCC 4.217T).


Asunto(s)
Antiinfecciosos , Streptomyces , ARN Ribosómico 16S/genética , Suelo , Ácidos Grasos/análisis , Genómica , Análisis de Secuencia de ADN , Filogenia , ADN Bacteriano/genética , Fosfolípidos/análisis , Técnicas de Tipificación Bacteriana
11.
Sci Total Environ ; 905: 167081, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37714348

RESUMEN

Deserts are extremely arid environments where life is exposed to multiple environmental stresses, including low water availability, high temperatures, intense radiation environments and soil carbon and nitrogen limitation. Microorganisms have enormous potential applications due to their unique physiological adaptation mechanisms, extensive involvement in geochemical cycles and production of new antibiotics, among many other characteristics. With the increasing amount of open data provides unprecedented opportunities to further reveal bacterial biodiversity and its global role in ecosystem function. Through the collection of published high-quality sequencing data supplemented with experimental findings, we investigated the distribution characteristics and functional properties of bacteria in desert ecosystems in northern China. We show that there are significant differences in bacterial diversity among different sandy areas, and that soil properties and climatic factors are the main factors affecting bacterial diversity in desert ecosystems. The mean annual precipitation in growing season, soil organic carbon, total nitrogen and total phosphorus had significant effects on the diversity of desert bacteria and main bacteria. Desert bacteria primarily participate in the macromolecular decomposition, phototrophy, and geochemical cycling of nitrogen. These findings deepen our understanding of the regional-scale soil microbial diversity patterns in Chinese desert ecosystems and broaden our understanding of the ecological functions carried out by bacteria in these environments.


Asunto(s)
Ecosistema , Suelo , Suelo/química , Carbono/análisis , Microbiología del Suelo , Bacterias , Nitrógeno/análisis , China , Clima Desértico
12.
Microorganisms ; 11(5)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37317185

RESUMEN

The Hexi Corridor is an arid region in northwestern China, where hypoliths are widely distributed, resulting from large amounts of translucent stone pavements. In this region, the water and heat distributions are uneven, with a descent gradient from east to west, which can affect the area's biological composition. The impact of environmental heterogeneity on the distribution of hypolithic microbial communities in this area is poorly understood, and this is an ideal location to investigate the factors that may influence the composition and structure of hypolithic microbial communities. An investigation of different sites with differences in precipitation between east and west revealed that the colonization rate decreased from 91.8% to 17.5% in the hypolithic community. Environmental heterogeneity influenced both the structure and function of the hypolithic community, especially total nitrogen (TN) and soil organic carbon (SOC). However, the effect on taxonomic composition was greater than that on ecological function. The dominant bacterial phyla in all sample sites were Cyanobacteria, Actinobacteria, Proteobacteria, and Deinococcus-Thermus, but the abundances varied significantly between the sampling sites. The eastern site had the highest relative abundance of Proteobacteria (18.43%) and Bacteroidetes (6.32%), while the western site had a higher relative abundance in the phyla Cyanobacteria (62%) and Firmicutes (1.45%); the middle site had a higher relative abundance of Chloroflexi (8.02%) and Gemmatimonadetes (1.87%). The dominant phylum in the fungal community is Ascomycota. Pearson correlation analysis showed that the soil's physicochemical properties were also associated with changes in community diversity at the sample sites. These results have important implications for better understanding the community assembly and ecological adaptations of hypolithic microorganisms.

13.
Mater Today Bio ; 20: 100678, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37293313

RESUMEN

Diabetic periodontitis is a major complication of diabetes, which has a deep involvement in teeth loss and more serious systematic diseases, including Alzheimer's disease, atherosclerosis and cancers. Diabetic periodontitis is difficult to treat because of recalcitrant infection and hyperglycemia-induced tissue dysfunction. Current treatments fail to completely eliminate infection due to the diffusion-reaction inhibition of biofilm, and ignore the tissue dysfunction. Here, we design a glucose-driven transformable complex, composed of calcium alginate (CaAlg) hydrogel shell and Zeolitic imidazolate framework-8 (ZIF-8) core encapsulating Glucose oxidase (GOx)/Catalase (CAT) and Minocycline (MINO), named as CaAlg@MINO/GOx/CAT/ZIF-8 (CMGCZ). The reaction product of glucose-scavenging, gluconic acid, could dissolve ZIF-8 core and transform CMGCZ from inflexible to flexible, facilitating the complex to overcome the diffusion-reaction inhibition of biofilm. Meanwhile, reduced glucose concentration could ameliorate the pyroptosis of macrophages to decrease the secretion of pro-inflammatory factors, thereby reducing inflamm-aging to alleviate periodontal dysfunction.

14.
Microb Cell Fact ; 22(1): 5, 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36609255

RESUMEN

BACKGROUND: New antibiotics are urgently needed in clinical treatment of superdrug-resistant bacteria. Nonribosomal peptides (NRPs) are a major source of antibiotics because they exhibit structural diversity, and unique antibacterial mechanisms and resistance. Analysis of gene clusters of S. agglomeratus 5-1-3 showed that Clusters 3, 6, 12, 21, and 28 were used to synthesize NRPs. Here, we examined secondary metabolites of S. agglomeratus 5-1-3 isolated from soils in the Qinghai-Tibet Plateau, China, for NRPs with antibacterial activity. RESULTS: We isolated a total of 36 Streptomyces strains with distinct colony morphological characteristics from 7 soil samples. We screened 8 Streptomyces strains resistant to methicillin-resistant Staphylococcus aureus (MRSA). We then selected S. agglomeratus 5-1-3 for further study based on results of an antibacterial activity test. Here, we isolated three compounds from S. agglomeratus 5-1-3 and characterized their properties. The crude extract was extracted with ethyl acetate and purified with column chromatography and semipreparative high-performance liquid chromatography (HPLC). We characterized the three compounds using NMR analyses as echinomycin (1), 5,7,4'-trihydroxy-3.3',5'-trimethoxy flavone (2), and 2,6,2', 6'-tetramethoxy-4,4-bis(2,3-epoxy-1-hydroxypropyl)-biphenyl (3). We tested the antibacterial activity of pure compounds from strain 5-1-3 with the Oxford cup method. NRP echinomycin (1) showed excellent anti-MRSA activity with a minimum inhibitory concentration (MIC) of 2.0 µg/mL. Meanwhile, MIC of compound 2 and 3 was 128.0 µg/mL for both. In addition, 203 mg of echinomycin was isolated from 10 L of the crude extract broth of strain 5-1-3. CONCLUSION: In this study, S. agglomeratus 5-1-3 with strong resistance to MRSA was isolated from the soils in the Qinghai-Tibet Plateau. Strain 5-1-3 had a high yield of echinomycin (1) an NRP with a MIC of 2 µg/mL against MRSA. We propose that echinomycin derived from S. agglomeratus 5-1-3 may be a potent antibacterial agent for pharmaceutical use.


Asunto(s)
Equinomicina , Staphylococcus aureus Resistente a Meticilina , Streptomyces , Tibet , Antibacterianos/química , Streptomyces/química , Pruebas de Sensibilidad Microbiana , Mezclas Complejas , Suelo
15.
Microb Ecol ; 85(4): 1382-1395, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35583685

RESUMEN

Understanding how microbial communities adapt to environmental stresses is critical for interpreting ecological patterns and microbial diversity. In the case of the Gobi Desert, little is known on the environmental factors that explain hypolithic colonization under quartz stones. By analyzing nine hypolithic communities across an arid gradient and the effects of the season of the year in the Hexi Corridor of this desert, we found a significant decrease in hypolithic colonization rates (from 47.24 to 15.73%) with the increasing drought gradient and found two distinct communities in Hot and Cold samples, which survived or proliferated after a hot or a cold period. While Cold communities showed a greater species diversity and a predominance of Cyanobacteria, Hot communities showed a predominance of members of the Proteobacteria and the Firmicutes. In comparison, Cold communities also possessed stronger functions in the photosynthesis and carbon metabolism. Based on the findings of this study, we proposed that the hypolithic communities of the Hexi Corridor of the Gobi Desert might follow a seasonal developmental cycle in which temperature play an important role. Thus after a critical thermal threshold is crossed, heterotrophic microorganisms predominate in the hot period, while Cyanobacteria predominate in the cold period.


Asunto(s)
Cianobacterias , Microbiota , Estaciones del Año , Clima Desértico , Cianobacterias/genética , Temperatura , Microbiología del Suelo
16.
Microorganisms ; 10(12)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36557661

RESUMEN

The harsh climatic conditions of deserts may lead to unique adaptations of microbes, which could serve as potential sources of new metabolites to cope with environmental stresses. However, the mechanisms governing the environmental adaptability and antimicrobial activity of desert Streptomyces remain inadequate, especially in extreme temperature differences, drought conditions, and strong radiation. Here, we isolated a Streptomyces strain from rocks in the Kumtagh Desert in Northwest China and tested its antibacterial activity, resistance to UV-C irradiation, and tolerance to hydrogen peroxide (H2O2). The whole-genome sequencing was carried out to study the mechanisms underlying physiological characteristics and ecological adaptation from a genomic perspective. This strain has a growth inhibitory effect against a variety of indicator bacteria, and the highest antibacterial activity recorded was against Bacillus cereus. Moreover, strain D23 can withstand UV-C irradiation up to 100 J/m2 (D10 = 80 J/m2) and tolerate stress up to 70 mM H2O2. The genome prediction of strain D23 revealed the mechanisms associated with its adaptation to extreme environmental and stressful conditions. In total, 33 biosynthetic gene clusters (BGCs) were predicted based on anti-SMASH. Gene annotation found that S. huasconensis D23 contains several genes and proteins associated with the biosynthesis of factors required to cope with environmental stress of temperature, UV radiation, and osmotic pressure. The results of this study provide information about the genome and BGCs of the strain S. huasconensis D23. The experimental results combined with the genome sequencing data show that antimicrobial activity and stress resistance of S. huasconensis D23 was due to the rich and diverse secondary metabolite production capacity and the induction of stress-responsive genes. The environmental adaptability and antimicrobial activity information presented here will be valuable for subsequent work regarding the isolation of bioactive compounds and provide insight into the ecological adaptation mechanism of microbes to extreme desert environments.

17.
BMC Microbiol ; 22(1): 265, 2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36335290

RESUMEN

BACKGROUND: The bacterial mechanisms responsible for hydrogen peroxide (H2O2) scavenging have been well-reported, yet little is known about how bacteria isolated from cold-environments respond to H2O2 stress. Therefore, we investigated the transcriptional profiling of the Planomicrobium strain AX6 strain isolated from the cold-desert ecosystem in the Qaidam Basin, Qinghai-Tibet Plateau, China, in response to H2O2 stress aiming to uncover the molecular mechanisms associated with H2O2 scavenging potential. METHODS: We investigated the H2O2-scavenging potential of the bacterial Planomicrobium strain AX6 isolated from the cold-desert ecosystem in the Qaidam Basin, Qinghai-Tibet Plateau, China. Furthermore, we used high-throughput RNA-sequencing to unravel the molecular aspects associated with the H2O2 scavenging potential of the Planomicrobium strain AX6 isolate. RESULTS: In total, 3,427 differentially expressed genes (DEGs) were identified in Planomicrobium strain AX6 isolate in response to 4 h of H2O2 (1.5 mM) exposure. Besides, Kyoto Encyclopedia of Genes and Genomes pathway and Gene Ontology analyses revealed the down- and/or up-regulated pathways following H2O2 treatment. Our study not only identified the H2O2 scavenging capability of the strain nevertheless also a range of mechanisms to cope with the toxic effect of H2O2 through genes involved in oxidative stress response. Compared to control, several genes coding for antioxidant proteins, including glutathione peroxidase (GSH-Px), Coproporphyrinogen III oxidase, and superoxide dismutase (SOD), were relatively up-regulated in Planomicrobium strain AX6, when exposed to H2O2. CONCLUSIONS: Overall, the results suggest that the up-regulated genes responsible for antioxidant defense pathways serve as essential regulatory mechanisms for removing H2O2 in Planomicrobium strain AX6. The DEGs identified here could provide a competitive advantage for the existence of Planomicrobium strain AX6 in H2O2-polluted environments.


Asunto(s)
Antioxidantes , Peróxido de Hidrógeno , Peróxido de Hidrógeno/farmacología , Tibet , Ecosistema , China , Bacterias
18.
Biology (Basel) ; 11(11)2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36358257

RESUMEN

Laohugou Glacier No. 12 is located on the northern slope of the western Qilian Mountains with a temperate continental wet climate and an extremely cold winter. Bacteria in a newly exposed moraine have to cope with various pressures owing to deglaciation at the glacier snout. However, limited information is available regarding the high diversity and temporary survival of culturable heterotrophic bacteria under various environmental stresses. To examine the tolerance of extremophiles against varying environmental conditions in a newly exposed moraine, we simulated environmental stress in bacterial cultures. The results showed that the isolated strains belonged to actinobacteria, Proteobacteria, Bacteroidetes, Deinococcus-Thermus, and Firmicutes. Actinobacteria was the most abundant phylum, followed by Proteobacteria, at both high and low temperatures. Pseudarthrobacter was the most abundant genus, accounting for 14.2% of the total isolates. Although several microorganisms grew at 10 °C, the proportion of microorganisms that grew at 25 °C was substantially higher. In particular, 50% of all bacterial isolates grew only at a high temperature (HT), whereas 21.4% of the isolates grew at a low temperature (LT), and 38.6% of the isolates grew at both HT and LT. In addition, many radiation-resistant extremophiles were identified, which adapted to both cold and oxidative conditions. The nearest neighbors of approximately >90% of bacteria belonged to a nonglacial environment, such as oil-contaminated soil, rocks, and black sand, instead of glacial niches. This study provides insights into the ecological traits, stress responses, and temporary survival of culturable heterotrophic bacteria in a newly exposed moraine with variable environmental conditions and the relationship of these communities with the non-glacial environment. This study may help to understand the evolution, competition, and selective growth of bacteria in the transition regions between glaciers and retreats in the context of glacier melting and retreat owing to global warming.

19.
Microorganisms ; 10(10)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36296313

RESUMEN

Mount Everest provides natural advantages to finding radiation-resistant extremophiles that are functionally mechanistic and possess commercial significance. (1) Background: Two bacterial strains, designated S5-59T and S8-45T, were isolated from moraine samples collected from the north slope of Mount Everest at altitudes of 5700m and 5100m above sea level. (2) Methods: The present study investigated the polyphasic features and genomic characteristics of S5-59T and S8-45T. (3) Results: The major fatty acids and the predominant respiratory menaquinone of S5-59T and S8-45T were summed as feature 3 (comprising C16:1 ω6c and/or C16:1 ω7c) and ubiquinone-10 (Q-10). Phylogenetic analyses based on 16S rRNA sequences and average nucleotide identity values among these two strains and their reference type strains were below the species demarcation thresholds of 98.65% and 95%. Strains S5-59T and S8-45T harbored great radiation resistance. The genomic analyses showed that DNA damage repair genes, such as mutL, mutS, radA, radC, recF, recN, etc., were present in the S5-59T and S8-45T strains. Additionally, strain S5-59T possessed more genes related to DNA protection proteins. The pan-genome analysis and horizontal gene transfers revealed that strains of Sphingomonas had a consistently homologous genetic evolutionary radiation resistance. Moreover, enzymatic antioxidative proteins also served critical roles in converting ROS into harmless molecules that resulted in resistance to radiation. Further, pigments and carotenoids such as zeaxanthin and alkylresorcinols of the non-enzymatic antioxidative system were also predicted to protect them from radiation. (4) Conclusions: Type strains S5-59T (=JCM 35564T =GDMCC 1.3193T) and S8-45T (=JCM 34749T =GDMCC 1.2715T) represent two novel species of the genus Sphingomonas with the proposed name Sphingomonas qomolangmaensis sp. nov. and Sphingomonas glaciei sp. nov. The type strains, S5-59T and S8-45T, were assessed in a deeply genomic study of their radiation-resistant mechanisms and this thus resulted in a further understanding of their greater potential application for the development of anti-radiation protective drugs.

20.
Arch Microbiol ; 204(9): 588, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36048304

RESUMEN

Pseudarthrobacter sulfonivorans strain Ar51 can degrade crude oil and multi-substituted benzene compounds efficiently at low temperatures. However, it cannot degrade hydroquinone, which is a key intermediate in the degradation of several other compounds of environmental importance, such as 4-nitrophenol, g-hexachlorocyclohexane, 4-hydroxyacetophenone and 4-aminophenol. Here we co-expressed the two subunits of hydroquinone dioxygenase from Sphingomonas sp. strain TTNP3 with different promoters in the strain Ar51. The strain with 2 hdnO promoters exhibited the strongest hydroquinone catabolic activity. However, in the absence of antibiotic selection this ability to degrade hydroquinone was lost due to plasmid instability. Consequently, we constructed a hisD knockout strain, which was unable to synthesise histidine. By introducing the hisD gene onto the plasmid, the ability to degrade hydroquinone in the absence of antibiotic selection was stabilised. In addition, to make the strain more stable for industrial applications, we knocked out the recA gene and integrated the hydroquinone dioxygenase genes at this chromosomal locus. This strain exhibited the strongest activity in catabolizing hydroquinone, up to 470 mg/L in 16 h without antibiotic selection. In addition, this activity was shown to be stable when the strain has cultured in medium without antibiotic selection after 20 passages.


Asunto(s)
Dioxigenasas , Sphingomonas , Antibacterianos/metabolismo , Biodegradación Ambiental , Dioxigenasas/genética , Dioxigenasas/metabolismo , Hidroquinonas/metabolismo , Micrococcaceae , Sphingomonas/genética , Sphingomonas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA