Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 857(Pt 3): 159725, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36302404

RESUMEN

Advanced oxidation processes (AOPs) such as ozonation and Fenton processes are widely used in the treatment of high-salt wastewater. The UV/O3 pressurization process was designed and applied at the pilot-scale for treatment of actual high-salt textile wastewater. The UV/O3 pressurization process achieved the highest decolorization (85 %) and chemical oxygen demand (CODCr, 43.2 %) removal efficiency at an O3 dosage of 200 g·t-1 and a pressure of 0.2 MPa. Compared to ordinary ozonation, the UV/O3 pressurization process improved the solubility and gas-liquid mass transfer efficiency of O3 in wastewater and generated a large number of O3 microbubbles. Hydroxyl radical (·OH), superoxide radicals (O2·-) and single oxygen (1O2) all played a significant role on the removal of pollutants in wastewater during the UV/O3 pressurization process. The reverse osmosis (RO) process was used to evaluate the effect of UV/O3 pressurization and Fenton pre-oxidation processes on the desalination process as the last process in treating high-salt organic wastewater. The pre-oxidation processes improved the initial RO water flux. Compared with the Fenton process, the UV/O3 pressurization process had less membrane fouling (thin fouling layer vs thick fouling layer), and final water flux (59.4 LMH) was higher than that of Fenton process (34.9 LHM). The total dissolved solids (TDS), Cl- and SO42- of the effluent from UV/O3 pressurization process (37.2, 7.6 and 3.0 mg·L-1) were better than that of Fenton process (65.7, 13.9 and 7.1 mg·L-1). Therefore, the UV/O3 pressurization process without secondary pollution is more suitable for the advanced treatment of high-salt organic wastewater than the Fenton process.


Asunto(s)
Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Aguas Residuales , Eliminación de Residuos Líquidos , Cinética , Peróxido de Hidrógeno , Oxidación-Reducción , Textiles , Agua , Ósmosis
2.
J Colloid Interface Sci ; 633: 628-639, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36481423

RESUMEN

Photothermal evaporation using solar energy is a sustainable way to produce fresh water from seawater. Aiming to explore functional materials as a solar-energized evaporator with enhanced evaporation rate and pollutant tolerance, this study was to synthesize a self-floating composite graphene aerogel (GA) doped with Enteromorpha and modified polyethylene glycol (PEG), named as PEGA using solar energy for desalination. Physio-chemical properties and evaporative mechanism of PEGA were experimentally investigated and analyzed with respect to molecular weight, PEG dosage, and ratio of Enteromorpha and graphene oxide. Experimental data revealed that the modification of PEG improved hydrophilic functional ability of PEGA, resulting in increasing the evaporation rate and photothermal conversion efficiency up to 2.55 kg/(m2·h) and 105.71 %, respectively. The ion removal rate of seawater exceeds 99.99 % via the PEGA conducted solar evaporation. Furthermore, PEGA possessed an excellent property of salinity emulsion pollution tolerance. Particularly, the evaporation rate of the PEG-modified biomass-based aerogel was 2.84 kg/(m2·h) in a 15 wt% NaCl solution (1 sun, 6 h) and 2.50 kg/(m2·h) at 1 h. The formation of hydrogen bonds between -OH of PEG and water molecules assist to conduct water along the graphene matrix to improve water evaporation. The cost of the graphene aerogel modified by Enteromorpha was reduced by 38.88 % less than the original graphene aerogel. The results from this study will greatly promote the application of graphene aerogel for desalination via solar evaporation.


Asunto(s)
Contaminantes Ambientales , Grafito , Energía Solar , Biomasa , Polietilenglicoles
3.
Materials (Basel) ; 15(17)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36079294

RESUMEN

Poor mechanical properties and durability of recycled aggregate concrete (RAC) hinder its application in the construction field. In this study, pre-wetted recycled coarse aggregate was used as the internal curing material for prepared RAC with low water-to-binder ratio (W/B), aiming to improve the mechanical properties and durability. The results show that the workability decreases with increasing contents of pre-wetted recycled coarse aggregate. The variation in compressive strength of RAC with different contents of pre-wetted recycled coarse aggregate is obvious within 28 d. After 28 d, the effect of internal curing of pre-wetted recycled coarse aggregate starts to occur, causing a sustained increase in compressive strength. The sealed concrete with 50% and 75% pre-wetted recycled coarse aggregate contents presents the highest compressive strength and better internal curing effect. The pre-wetted recycled coarse aggregate decreases the relative humidity inside the concrete and effectively inhibits the development of shrinkage in the early stages. The RAC with pre-wetted recycled coarse aggregate presents little effect on the drying shrinkage. Additionally, the electric flux of RAC cured for 28 d increases from 561C to 1001C, which presents good resistance to chloride permeation. Microscopic tests indicate that the incorporation of pre-wetted recycled coarse aggregate is beneficial to the improvements of internal structure of RAC.

4.
Polymers (Basel) ; 14(9)2022 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-35567085

RESUMEN

Benefiting from the multi-directional load-bearing capability, the three-dimensional braided composites (3DBC) have found a wide application in primary structures. It is therefore of great importance to fully understand their mechanical behavior and failure modes. In the present paper, the tensile and compressive tests were carried out, according to standardized testing methods, for eight types of 3DBC, which were manufactured by resin transfer molding (RTM). It was found that the mechanical properties of the 3DBCs decreased with an increasing braiding angle. When the braiding angle was 20°, 3D 5-directional braided composite (3D5dBC) exhibited the best mechanical properties, while for the braiding angle of 40°, the mechanical properties of 3D6dBC were the most prominent. Moreover, the tensile strength of the 3DBCs is approximately two times as much as the compressive strength; however, the compressive modulus is always 10% higher than the tensile modulus. The failure modes of the 3DBCs with a braiding angle of 20°greatly depended on the braiding structures. However, they tend to be consistent when the braiding angle increases to 40°.

5.
Sci Total Environ ; 807(Pt 1): 150867, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34627913

RESUMEN

Herein, we attempted to apply an alumina-based bimetallic (Mn-Ce) catalyst as an O3 activator and explored the feasibility of the treatment of hypersaline organic wastewater. Compared with independent O3 (35.00 ± 4.20%), mineralization of ciprofloxacin (CIP) under the Mn-CeOx@γ-Al2O3/O3 (MCAO) process was elevated to 76.04 ± 2.30%. The synergetic corporation among multivalence redox pairs of Mn (III)/Mn (IV), Ce (III)/Ce (IV) promoted the protonation of the surface hydroxyl group (S-OH2+), and subsequently the dominant reactive oxygen species in the MCAO process, OH and O2-, were generated rapidly. However, the mineralization of CIP decreased in MCAO/SO42- system due to the formation of SO4-, which reacted with CIP more slowly (8.4 × 108 M-1 s-1) than OH (4.1 × 109 M-1 s-1). In MCAO/SO42-/Cl- mixture saline conditions, mineralization of CIP was improved at low Cl- concentration (0.5 wt%) due to the generation of Cl, while inhibited with excessive Cl- (≥1.5 wt%) owing to the formation of residual chlorides (Cl2, Cl2- and ClO-). Meanwhile, the MCAO process possessed promising capability to remediate hypersaline wastewater containing dyes, phenol and pesticides, as well as actual salinity-rich wastewater. Based on the above, the present study would provide new insights into hypersaline organic wastewater treatment by the MCAO process.


Asunto(s)
Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Antibacterianos , Catálisis , Sulfatos , Aguas Residuales , Contaminantes Químicos del Agua/análisis
6.
Materials (Basel) ; 14(22)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34832356

RESUMEN

Alkaline electrolyzed water, a kind of clean green water with excellent characteristics such as high activity, strong alkalinity, high ion penetrating ability, electrical charge, and good molecule adsorption, was significant to the resource utilization of industrial fly ash waste. This paper studies highly active potassium-based alkaline electrolyzed water's impact, compared with ordinary water, on the cement hydration process using microstructural methods such as a hydration heat test, differential thermal analysis, X-ray diffraction (XRD) pattern, and Scanning electron microscope (SEM) image analysis. Fly ash cement-based materials were first prepared with alkaline electrolyzed water as the mixing water. The alkaline electrolyzed water's influence on fly ash paste workability and the mechanical properties of fly ash mortar for varying fly ash proportions were ratified. Then alkaline electrolyzed water with the best pH value was selected to prepare fly ash concrete, and its durability was studied. The test results showed that it is feasible to increase the utilization rate of fly ash by using alkaline electrolyzed water. Furthermore, it promoted the process of cement hydration, increased the rate of the hydration reaction, and the promotion effect increased with the increase in pH value of the alkaline electrolyzed water, and also promoted the effective decomposition of the vitreous shell of fly ash to stimulate its early activity. Concurrent tests with ordinary water paste showed that the water requirement for normal consistency and setting time with alkaline electrolyzed water paste were significantly less. Alkaline electrolyzed water also solved the problem related to the low early strength of fly ash mortar. Furthermore, using alkaline electrolyzed water with an optimum pH value of 11.5 to prepare fly ash concrete effectively reduced concrete's carbonation depth and carbonation rate and lessened the chloride ion migration coefficient.

7.
Materials (Basel) ; 14(13)2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34208984

RESUMEN

Compared with nanosilica collected in a gaseous state, nanosilica sol has great economic value and application significance for improving the performance of concrete and mortar. In this study, the influence of nanosilica sol on the hydration process of different kinds of cement is studied by means of hydration heat analysis, X-ray diffraction analysis (XRD) and other methods, and the properties of mortar such as setting time, mechanical properties and porosity are also studied to characterize the influence of nanosilica sol on the macroscopic properties of mortar. The experimental results show that nanosilica sol can accelerate the hydration rate of two kinds of cement and promote the hydration reaction degree of cement, and this promotion effect increases with the increase in nanosilica sol content. At the same time, nanosilica sol can significantly shorten the setting time of the two kinds of cement, and it is more obvious with the increase in content. Excessive content of nanosilica sol will adversely affect the permeability resistance of mortar. It may be caused by the weak interval formed by nanosilica particle clusters in the mortar matrix, which can be supported by the mortar pore structure distribution test. At the same time, the influence of nanosilica sol on the hydration of the two kinds of cement is different, and the compressive strength of HBSAC cement mortar increases first and then decreases after adding nanosilica sol; However, the compressive strength of P·O 42.5 cement mortar increases gradually after adding nanometer silica sol. This shows that nanosilica sol does not effectively promote the hydration of ß-C2S in high belite sulfoaluminate cement (HBSAC) mortar. Based on the above experimental results, it can be concluded that when the content of nanosilica sol is about 1%, it has the best promotion effect on the hydration of the two kinds of cement and the performance of mortar.

8.
Chemosphere ; 276: 130220, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34088098

RESUMEN

The increasing discharge of high-salinity organic wastewater has drawn much concern. This work investigated the degradation and mineralization of ciprofloxacin (CIP) in high-salinity wastewater by ozonation coupled with ultraviolet irradiation (UV). After coupling with UV, the removal efficiency of CIP was increased insignificantly (maximum 5.0%), while the dissolved organic carbon (DOC) removal in CIP wastewater (CW) was enhanced dramatically to 91.4% as compared with independent O3 (37.5%). The reactive oxygen species (ROS) were identified as singlet oxygen (1O2) and superoxide anion radical (O2-•)·through electron paramagnetic resonance (EPR) and quenching experiments, among which 1O2 predominated in the UV/O3 process. The existence of salt (Na2SO4 or NaCl) accelerated the mass transfer of O3 at the gas-liquid interface, thus CIP removal was promoted in UV/O3/SO42- system. However, excessive Cl- inhibited the removal efficiency of DOC in CW owing to its consumption of O3. CIP degradation decreased as pH increased in non-salinity and UV/O3/SO42- system, which proved the direct reaction occurred between CIP and O3. On the contrary, the O3 mass transfer increased with increasing pH, hence the elimination of DOC in CW was promoted in UV/O3/Cl- system. Volatile organic compounds (VOCs) were detected from tail gas, but the toxicity estimation indicated the toxicity of products was similar or less than that of CIP. Overall, this work is meaningful for the practical application of UV/O3 process in the high-salinity industry.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Ciprofloxacina , Salinidad , Rayos Ultravioleta , Contaminantes Químicos del Agua/análisis
9.
Materials (Basel) ; 15(1)2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-35009403

RESUMEN

Due to the large amount of old hardened cement mortar attached to the surface of aggregate and the internal micro-cracks formed by the crushing process, the water absorption, apparent density, and crushing index of recycled coarse aggregate are still far behind those of natural coarse aggregate. Based on the performance requirements of different qualities of recycled coarse aggregate, the performance differences of recycled coarse aggregate before and after physical strengthening were observed. The results showed that the physical strengthening technique can remove old hardened mortar and micro powder attached to the surface of recycled coarse aggregate by mechanical action, which can effectively improve the quality of recycled coarse aggregate. The optimum calcination temperature of the recycled coarse aggregate was 400 °C and the grinding time was 20 min. The contents of the attached mortar in recycled coarse aggregates of Class I, II, and III were 7.9%, 22.8%, and 39.7%, respectively. The quality of recycled coarse aggregate was closely related to the amount of mortar attached to the surface. The higher the mortar content, the higher the water absorption, lower apparent density, and higher crushing index of the recycled coarse aggregate.

10.
Chemosphere ; 268: 128796, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33158505

RESUMEN

In this work, the combined ultraviolet ozone process (UV/O3) was applied for organic contaminant (Reactive Blue K-GL, RB) degradation in high salinity. The degradation rates of RB in both O3 and UV/O3 systems were enhanced by NaCl (the k increased from 0.080 to 0.116 to 0.132 and 0.267 min-1 respectively), while mineralization rate varied at different salt conditions. In addition, UV irradiation promoted the degradation efficiency of RB with the presence of salt. Singlet oxygen (1O2) was the primary active species in the UV/O3 system. The quenching experiments and signal intensity of 1O2 corresponded well to the mineralization of RB. Under conditions of high salinity and high pH, O3 has high mass transfer coefficient (kLa, 3.303 min-1) and self-decomposition (kd, 0.600 min-1), which further promoted the formation of 1O2 for mineralization of RB. Furthermore, UV/O3 system was efficient in real textile wastewater treatment (CODCr removal rate 91.7% and decolorization rate 98.7%).


Asunto(s)
Contaminantes Ambientales , Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Oxidación-Reducción , Salinidad , Oxígeno Singlete , Rayos Ultravioleta , Contaminantes Químicos del Agua/análisis
11.
Bioresour Technol ; 249: 241-246, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29049982

RESUMEN

In present study, the characterization of soluble microbial products (SMP) was evaluated in a partial nitrification sequencing batch biofilm reactor (SBBR). During the stable operation of SBBR, the NH4+-N removal efficiency and nitrite accumulation ratio were 96.70±0.41% and 93.77±1.04%, respectively. According to excitation-emission matrix (EEM), the intensities of protein-like substances were reduced under anoxic and aerobic phases, whereas humic-like substances had little change during the whole cycle. Parallel factor analysis (PARAFAC) further indentified two components and their fluorescence intensity scores were both reduced. Synchronous fluorescence spectra revealed that the fluorescence intensity of protein-like fraction decreased with reaction time. Two-dimensional correlation spectroscopy (2D-COS) further demonstrated that protein-like fraction might decrease earlier than the other fractions. The information obtained in present study is of fundamental significance for understanding the key components in SMP and their changes in partial nitrification system by using a spectral approach.


Asunto(s)
Nitrificación , Aguas Residuales , Amoníaco , Biopelículas , Reactores Biológicos , Nitrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...