Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 142
1.
Angew Chem Int Ed Engl ; : e202405209, 2024 May 07.
Article En | MEDLINE | ID: mdl-38712643

Regulating the electric double layer (EDL) structure of the zinc metal anode by using electrolyte additives is an efficient way to suppress interface side reactions and facilitate uniform zinc deposition. Nevertheless, there are no reports investigating the proactive design of EDL-regulating additives before the start of experiments. Herein, a functional group assembly strategy is proposed to design electrolyte additives for modulating the EDL, thereby realizing a long-lasting zinc metal anode. Specifically, by screening ten common functional groups, N, N-dimethyl-1H-imidazole-1-sulfonamide (IS) is designed by assembling an imidazole group, characterized by its high adsorption capability on the zinc anode, and a sulfone group, which exhibits strong binding with Zn2+ ions. Benefiting from the adsorption functionalization of the imidazole group, the IS molecules occupy the position of H2O in the inner Helmholtz layer of the EDL, forming a molecular protective layer to inhibit H2O-induced side reactions. Meanwhile, the sulfone group in IS, acting as a binding site to Zn2+, promotes the de-solvation of Zn2+ ions, facilitating compact zinc deposition. Consequently, the utilization of IS significantly extending the cycling stability of Zn||Zn and Zn||NaV3O8·1.5H2O full cell. This study offers an innovative approach to the design of EDL regulators for high-performance zinc metal batteries.

2.
Angew Chem Int Ed Engl ; : e202407898, 2024 May 13.
Article En | MEDLINE | ID: mdl-38739536

The quest for smart electronics with higher energy densities has intensified the development of high-voltage LiCoO2 (LCO). Despite their potential, LCO materials operating at 4.7 V faces critical challenges, including interface degradation and structural collapse. Herein, we propose a collective surface architecture through precise nanofilm coating and doping that combines an ultra-thin LiAlO2 coating layer and gradient doping of Al. This architecture not only mitigates side reactions, but also improves the Li+ migration kinetics on the LCO surface. Meanwhile, gradient doping of Al inhibited the severe lattice distortion caused by the irreversible phase transition of O3-H1-3-O1, thereby enhanced the electrochemical stability of LCO during 4.7 V cycling. DFT calculations further revealed that our approach significantly boosts the electronic conductivity. As a result, the modified LCO exhibited an outstanding reversible capacity of 230 mAh g-1 at 4.7 V, which is approximately 28% higher than the conventional capacity at 4.5 V. To demonstrate their practical application, our cathode structure shows improved stability in full pouch cell configuration under high operating voltage. LCO exhibited an excellent cycling stability, retaining 82.33% after 1000 cycles at 4.5 V. This multifunctional surface modification strategy offers a viable pathway for the practical application of LCO materials.

3.
J Clin Neurosci ; 123: 137-147, 2024 May.
Article En | MEDLINE | ID: mdl-38574685

OBJECTIVE: This study aimed to analyze the risk factors for recurrent ischemic stroke in patients with symptomatic intracranial atherosclerotic stenosis (ICAS) who underwent successful stent placement and to establish a nomogram prediction model. METHODS: We utilized data from a prospective collection of 430 consecutive patients at Jining NO.1 People's Hospital from November 2021 to November 2022, conducting further analysis on the subset of 400 patients who met the inclusion criteria. They were further divided into training (n=321) and validation (n=79) groups. In the training group, we used univariate and multivariate COX regression to find independent risk factors for recurrent stroke and then created a nomogram. The assessment of the nomogram's discrimination and calibration was performed through the examination of various measures including the Consistency index (C-index), the area under the receiver operating characteristic (ROC) curves (AUC), and the calibration plots. Decision curve analysis (DCA) was used to evaluate the clinical utility of the nomogram by quantifying the net benefit to the patient under different threshold probabilities. RESULTS: The nomogram for predicting recurrent ischemic stroke in symptomatic ICAS patients after stent placement utilizes six variables: coronary heart disease (CHD), smoking, multiple ICAS, systolic blood pressure (SBP), in-stent restenosis (ISR), and fasting plasma glucose. The C-index (0.884 for the training cohort and 0.87 for the validation cohort) and the time-dependent AUC (>0.7) indicated satisfactory discriminative ability of the nomogram. Furthermore, DCA indicated a clinical net benefit from the nomogram. CONCLUSIONS: The predictive model constructed includes six predictive factors: CHD, smoking, multiple ICAS, SBP, ISR and fasting blood glucose. The model demonstrates good predictive ability and can be utilized to predict ischemic stroke recurrence in patients with symptomatic ICAS after successful stent placement.


Intracranial Arteriosclerosis , Ischemic Stroke , Nomograms , Recurrence , Stents , Humans , Male , Female , Intracranial Arteriosclerosis/surgery , Intracranial Arteriosclerosis/diagnostic imaging , Middle Aged , Ischemic Stroke/surgery , Ischemic Stroke/etiology , Aged , Risk Factors , Prospective Studies , Constriction, Pathologic/surgery
4.
Nat Commun ; 15(1): 3325, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38637537

The effective flow of electrons through bulk electrodes is crucial for achieving high-performance batteries, although the poor conductivity of homocyclic sulfur molecules results in high barriers against the passage of electrons through electrode structures. This phenomenon causes incomplete reactions and the formation of metastable products. To enhance the performance of the electrode, it is important to place substitutable electrification units to accelerate the cleavage of sulfur molecules and increase the selectivity of stable products during charging and discharging. Herein, we develop a single-atom-charging strategy to address the electron transport issues in bulk sulfur electrodes. The establishment of the synergistic interaction between the adsorption model and electronic transfer helps us achieve a high level of selectivity towards the desirable short-chain sodium polysulfides during the practical battery test. These finding indicates that the atomic manganese sites have an enhanced ability to capture and donate electrons. Additionally, the charge transfer process facilitates the rearrangement of sodium ions, thereby accelerating the kinetics of the sodium ions through the electrostatic force. These combined effects improve pathway selectivity and conversion to stable products during the redox process, leading to superior electrochemical performance for room temperature sodium-sulfur batteries.

5.
Adv Mater ; : e2402337, 2024 Mar 08.
Article En | MEDLINE | ID: mdl-38458611

Room-temperature sodium-sulfur (RT-Na/S) batteries are promising alternatives for next-generation energy storage systems with high energy density and high power density. However, some notorious issues are hampering the practical application of RT-Na/S batteries. Besides, the working mechanism of RT-Na/S batteries under practical conditions such as high sulfur loading, lean electrolyte, and low capacity ratio between the negative and positive electrode (N/P ratio), is of essential importance for practical applications, yet the significance of these parameters has long been disregarded. Herein, it is comprehensively reviewed recent advances on Na metal anode, S cathode, electrolyte, and separator engineering for RT-Na/S batteries. The discrepancies between laboratory research and practical conditions are elaborately discussed, endeavors toward practical applications are highlighted, and suggestions for the practical values of the crucial parameters are rationally proposed. Furthermore, an empirical equation to estimate the actual energy density of RT-Na/S pouch cells under practical conditions is rationally proposed for the first time, making it possible to evaluate the gravimetric energy density of the cells under practical conditions. This review aims to reemphasize the vital importance of the crucial parameters for RT-Na/S batteries to bridge the gaps between laboratory research and practical applications.

6.
Chem Soc Rev ; 53(8): 4230-4301, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38477330

Sodium-ion batteries (SIBs) are experiencing a large-scale renaissance to supplement or replace expensive lithium-ion batteries (LIBs) and low energy density lead-acid batteries in electrical energy storage systems and other applications. In this case, layered oxide materials have become one of the most popular cathode candidates for SIBs because of their low cost and comparatively facile synthesis method. However, the intrinsic shortcomings of layered oxide cathodes, which severely limit their commercialization process, urgently need to be addressed. In this review, inherent challenges associated with layered oxide cathodes for SIBs, such as their irreversible multiphase transition, poor air stability, and low energy density, are systematically summarized and discussed, together with strategies to overcome these dilemmas through bulk phase modulation, surface/interface modification, functional structure manipulation, and cationic and anionic redox optimization. Emphasis is placed on investigating variations in the chemical composition and structural configuration of layered oxide cathodes and how they affect the electrochemical behavior of the cathodes to illustrate how these issues can be addressed. The summary of failure mechanisms and corresponding modification strategies of layered oxide cathodes presented herein provides a valuable reference for scientific and practical issues related to the development of SIBs.

7.
Chem Sci ; 15(9): 3071-3092, 2024 Feb 28.
Article En | MEDLINE | ID: mdl-38425533

Aqueous zinc-iodine batteries stand out as highly promising energy storage systems owing to the abundance of resources and non-combustible nature of water coupled with their high theoretical capacity. Nevertheless, the development of aqueous zinc-iodine batteries has been impeded by persistent challenges associated with iodine cathodes and Zn anodes. Key obstacles include the shuttle effect of polyiodine and the sluggish kinetics of cathodes, dendrite formation, the hydrogen evolution reaction (HER), and the corrosion and passivation of anodes. Numerous strategies aimed at addressing these issues have been developed, including compositing with carbon materials, using additives, and surface modification. This review provides a recent update on various strategies and perspectives for the development of aqueous zinc-iodine batteries, with a particular emphasis on the regulation of I2 cathodes and Zn anodes, electrolyte formulation, and separator modification. Expanding upon current achievements, future initiatives for the development of aqueous zinc-iodine batteries are proposed, with the aim of advancing their commercial viability.

8.
Adv Mater ; 36(21): e2312207, 2024 May.
Article En | MEDLINE | ID: mdl-38329004

Linearly interlinked single atoms offer unprecedented physiochemical properties, but their synthesis for practical applications still poses significant challenges. Herein, linearly interlinked iron single-atom catalysts that are loaded onto interconnected carbon channels as cathodic sulfur hosts for room-temperature sodium-sulfur batteries are presented. The interlinked iron single-atom exhibits unique metallic iron bonds that facilitate the transfer of electrons to the sulfur cathode, thereby accelerating the reaction kinetics. Additionally, the columnated and interlinked carbon channels ensure rapid Na+ diffusion kinetics to support high-rate battery reactions. By combining the iron atomic chains and the topological carbon channels, the resulting sulfur cathodes demonstrate effective high-rate conversion performance while maintaining excellent stability. Remarkably, even after 5000 cycles at a current density of 10 A g-1, the Na-S battery retains a capacity of 325 mAh g-1. This work can open a new avenue in the design of catalysts and carbon ionic channels, paving the way to achieve sustainable and high-performance energy devices.

9.
Nanomicro Lett ; 16(1): 78, 2024 Jan 08.
Article En | MEDLINE | ID: mdl-38190094

The concentration difference in the near-surface region of lithium metal is the main cause of lithium dendrite growth. Resolving this issue will be key to achieving high-performance lithium metal batteries (LMBs). Herein, we construct a lithium nitrate (LiNO3)-implanted electroactive ß phase polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) crystalline polymorph layer (PHL). The electronegatively charged polymer chains attain lithium ions on the surface to form lithium-ion charged channels. These channels act as reservoirs to sustainably release Li ions to recompense the ionic flux of electrolytes, decreasing the growth of lithium dendrites. The stretched molecular channels can also accelerate the transport of Li ions. The combined effects enable a high Coulombic efficiency of 97.0% for 250 cycles in lithium (Li)||copper (Cu) cell and a stable symmetric plating/stripping behavior over 2000 h at 3 mA cm-2 with ultrahigh Li utilization of 50%. Furthermore, the full cell coupled with PHL-Cu@Li anode and LiFePO4 cathode exhibits long-term cycle stability with high-capacity retention of 95.9% after 900 cycles. Impressively, the full cell paired with LiNi0.87Co0.1Mn0.03O2 maintains a discharge capacity of 170.0 mAh g-1 with a capacity retention of 84.3% after 100 cycles even under harsh condition of ultralow N/P ratio of 0.83. This facile strategy will widen the potential application of LiNO3 in ester-based electrolyte for practical high-voltage LMBs.

10.
Adv Mater ; 36(5): e2307645, 2024 Feb.
Article En | MEDLINE | ID: mdl-37989269

Sodium metal has become one of the most promising anodes for next-generation cheap and high-energy-density metal batteries; however, challenges caused by the uncontrollable sodium dendrite growth and fragile solid electrolyte interphase (SEI) restrict their large-scale practical applications in low-cost and wide-voltage-window carbonate electrolytes. Herein, a novel multifunctional separator with lightweight and high thinness is proposed, assembled by the cobalt-based metal-organic framework nanowires (Co-NWS), to replace the widely applied thick and heavy glass fiber separator. Benefitting from its abundant sodiophilic functional groups and densely stacked nanowires, Co-NWS not only exhibits outstanding electrolyte wettability and effectively induces uniform Na+ ion flux as a strong ion redistributor but also favors constructing the robust N,F-rich SEI layer. Satisfactorily, with 10 µL carbonate electrolyte, a Na|Co-NWS|Cu half-cell delivers stable cycling (over 260 cycles) with a high average Coulombic efficiency of 98%, and the symmetric cell shows a long cycle life of more than 500 h. Remarkably, the full cell shows a long-term life span (over 1500 cycles with 92% capacity retention) at high current density in the carbonate electrolyte. This work opens up a strategy for developing dendrite-free, low-cost, and long-life-span sodium metal batteries in carbonate-based electrolytes.

11.
Article En | MEDLINE | ID: mdl-38083601

The rise in population and aging has led to a significant increase in the number of individuals affected by common causes of vision loss. Early diagnosis and treatment are crucial to avoid the consequences of visual impairment. However, in early stages, many visual problems are making it difficult to detect. Visual adaptation can compensate for several visual deficits with adaptive eye movements. These adaptive eye movements may serve as indicators of vision loss. In this work, we investigate the association between eye movement and blurred vision. By using Electrooculography (EOG) to record eye movements, we propose a new tracking model to identify the deterioration of refractive power. We verify the technical feasibility of this method by designing a blurred vision simulation experiment. Six sets of prescription lenses and a pair of flat lenses were used to create different levels of blurring effects. We analyzed binocular movements through EOG signals and performed a seven-class classification using the ResNet18 architecture. The results revealed an average classification accuracy of 94.7% in the subject-dependent model. However, the subject-independent model presented poor performance, with the highest accuracy reaching only 34.5%. Therefore, the potential of an EOG-based visual quality monitoring system is proven. Furthermore, our experimental design provides a novel approach to assessing blurred vision.


Eye Movements , Vision, Low , Humans , Electrooculography/methods , Vision Disorders
12.
Adv Mater ; 35(40): e2305149, 2023 Oct.
Article En | MEDLINE | ID: mdl-37528535

Optimizing charge transfer and alleviating volume expansion in electrode materials are critical to maximize electrochemical performance for energy-storage systems. Herein, an atomically thin soft-rigid Co9 S8 @MoS2 core-shell heterostructure with dual cation vacancies at the atomic interface is constructed as a promising anode for high-performance sodium-ion batteries. The dual cation vacancies involving VCo and VMo in the heterostructure and the soft MoS2 shell afford ionic pathways for rapid charge transfer, as well as the rigid Co9 S8 core acting as the dominant active component and resisting structural deformation during charge-discharge. Electrochemical testing and theoretical calculations demonstrate both excellent Na+ -transfer kinetics and pseudocapacitive behavior. Consequently, the soft-rigid heterostructure delivers extraordinary sodium-storage performance (389.7 mA h g-1 after 500 cycles at 5.0 A g-1 ), superior to those of the single-phase counterparts: the assembled Na3 V2 (PO4 )3 ||d-Co9 S8 @MoS2 /S-Gr full cell achieves an energy density of 235.5 Wh kg-1 at 0.5 C. This finding opens up a unique strategy of soft-rigid heterostructure and broadens the horizons of material design in energy storage and conversion.

13.
Nanomicro Lett ; 15(1): 208, 2023 Aug 31.
Article En | MEDLINE | ID: mdl-37651047

The last several years have witnessed the prosperous development of zinc-ion batteries (ZIBs), which are considered as a promising competitor of energy storage systems thanks to their low cost and high safety. However, the reversibility and availability of this system are blighted by problems such as uncontrollable dendritic growth, hydrogen evolution, and corrosion passivation on anode side. A functionally and structurally well-designed anode current collectors (CCs) is believed as a viable solution for those problems, with a lack of summarization according to its working mechanisms. Herein, this review focuses on the challenges of zinc anode and the mechanisms of modified anode CCs, which can be divided into zincophilic modification, structural design, and steering the preferred crystal facet orientation. The possible prospects and directions on zinc anode research and design are proposed at the end to hopefully promote the practical application of ZIBs.

14.
Nanoscale ; 15(31): 13076-13085, 2023 Aug 10.
Article En | MEDLINE | ID: mdl-37498536

All-solid-state batteries are one of the most important game changers in electrochemical energy storage since they are free from the risk of leakage of hazardous flammable liquid solvents. Among the various types of solid-state electrolytes, Li7-xLa3Zr2-xTaxO12 garnets possess many desirable advantages to be considered a suitable candidate for lithium-ion batteries. However, their practical application has been hindered by premature short-circuits due to lithium dendrite growth, nonnegligible electronic conductivity and interfacial air sensitivity issues. Herein, we propose a multifunctional layer strategy to simultaneously address both the interface and electronic conductivity issues. With the help of a facile chemical process based on reactive cobalt boride, electron leakage was effectively blocked and the electrochemical performance/stability could be well maintained over extended cycles. The cobalt boride-coating layer also possessed an impressive Li metal wetting ability while sustaining a low interfacial resistance. A full cell paired with a commercialized cathode showed satisfactory performance with low overpotentials and a high specific capacity over 150 mA h g-1. Moreover, first-principle calculations further revealed the status of the rearrangement of the electron cloud behind the charge-density difference, and the nature of the low diffusion energy barrier of the reactive cobalt boride protective layer. Our strategy highlights the necessity of designing proper multifunctional layers in the garnet-type solid-state lithium-ion battery system.

15.
Small ; 19(30): e2302151, 2023 Jul.
Article En | MEDLINE | ID: mdl-37191229

Enhancing alkaline urea oxidation reaction (UOR) activity is essential to upgrade renewable electrolysis systems. As a core step of UOR, proton-coupled electron transfer (PCET) determines the overall performance, and accelerating its kinetic remains a challenge. In this work, a newly raised electrocatalyst of NiCoMoCuOx Hy with derived multi-metal co-doping (oxy)hydroxide species during electrochemical oxidation states is reported, which ensures considerable alkaline UOR activity (10/500 mA cm-2 at 1.32/1.52 V vs RHE, respectively). Impressively, comprehensive studies elucidate the correlation between the electrode-electrolyte interfacial microenvironment and the electrocatalytic urea oxidation behavior. Specifically, NiCoMoCuOx Hy featured with dendritic nanostructure creates a strengthened electric field distribution. This structural factor prompts the local OH- enrichment in electrical double layer (EDL), so that the dehydrogenative oxidation of the catalyst is directly reinforced to facilitate the subsequent PCET kinetics of nucleophilic urea, resulting in high UOR performance. In practical utilization, NiCoMoCuOx Hy -driven UOR coupled cathodic hydrogen evolution reaction (HER) and carbon dioxide reduction reaction (CO2 RR), and harvested high value-added products of H2 and C2 H4 , respectively. This work clarifies a novel mechanism to improve electrocatalytic UOR performance through structure-induced interfacial microenvironment modulation.

16.
Clin Neuroradiol ; 33(2): 519-528, 2023 Jun.
Article En | MEDLINE | ID: mdl-36520189

BACKGROUND: Acute large vessel occlusion due to underlying intracranial atherosclerotic stenosis (ICAS-LVO) increases the difficulty of revascularization, resulting in frequent re-occlusion. The establishment of its pathogenesis before endovascular treatment (EVT) is beneficial for patients. We aimed at developing and validating a clinical prediction model for ICAS-LVO patients before EVT. METHODS: Patients with acute large vessel occlusion at Jining No. 1 People's Hospital from January 2019 to September 2021 were retrospectively included as the training cohort. The 70 patients who met the inclusion and exclusion criteria were included in the validation cohort (October 2021 to May 2022). Demographics, onset form, medical history, digital subtraction angiography (DSA) imaging data, and laboratory test data were collected. Preprocedural parameters for the ICAS-LVO risk prediction model were established by stepwise logistic regression controlling for the confounding effects. Then, we constructed a nomogram model and evaluated its performance via the Hosmer-Lemeshow goodness-of-fit test, area under the ROC curve (AUC) analysis. RESULTS: The 231 acute LVO patients were included in the final analysis, 74 (32.3%) patients were ICAS-LVO. A preoperative diagnosis prediction model consisting of five predictors for ICAS-LVO, including fluctuating symptoms, NIHSS < 16, atrial fibrillation, tapered sign, and ASITN/SIR score ≥ 2. The model depicted an acceptable calibration (Hosmer-Lemeshow test, p = 0.451) and good discrimination (AUC, 0.941; 95% confidence interval, 0.910-0.971). The optimal cut-off value for the ICAS-LVO scale was 2 points, with 86.5% sensitivity, 91.1% specificity, and 90.5% accuracy. In the validation cohort, the discriminative ability was promising with an AUC value of 0.897, implying a good predictive performance. CONCLUSION: The established ICAS-LVO scale, which is composed of five predictors: fluctuating symptoms, NIHSS < 16, atrial fibrillation, tapered sign, and ASITN/SIR score ≥ 2, has a good predictive value for ICAS-LVO in Chinese populations.


Atrial Fibrillation , Intracranial Arteriosclerosis , Stroke , Humans , Retrospective Studies , Constriction, Pathologic , Atrial Fibrillation/diagnosis , Models, Statistical , Prognosis , Intracranial Arteriosclerosis/complications , Intracranial Arteriosclerosis/diagnostic imaging , Stroke/therapy
17.
Adv Mater ; 35(1): e2208237, 2023 Jan.
Article En | MEDLINE | ID: mdl-36239267

Growth of dendrites, the low plating/stripping efficiency of Zn anodes, and the high freezing point of aqueous electrolytes hinder the practical application of aqueous Zn-ion batteries. Here, a zwitterionic osmolyte-based molecular crowding electrolyte is presented, by adding betaine (Bet, a by-product from beet plant) to the aqueous electrolyte, to solve the abovementioned problems. Substantive verification tests, density functional theory calculations, and ab initio molecular dynamics simulations consistently reveal that side reactions and growth of Zn dendrites are restrained because Bet can break Zn2+ solvation and regulate oriented 2D Zn2+ deposition. The Bet/ZnSO4 electrolyte enables superior reversibility in a Zn-Cu half-cell to achieve a high Coulombic efficiency >99.9% for 900 cycles (≈1800 h), and dendrite-free Zn plating/stripping in Zn-Zn cells for 4235 h at 0.5 mA cm-2 and 0.5 mAh cm-2 . Furthermore, a high concentration of Bet lowers the freezing point of the electrolyte to -92 °C via the molecular-crowding effect, which ensures the stable operation of the aqueous batteries at -30 °C. This innovative concept of such a molecular crowding electrolyte will inject new vitality into the development of multifunctional aqueous electrolytes.


Antioxidants , Zinc , Temperature , Betaine , Electrodes
18.
Angew Chem Int Ed Engl ; 62(6): e202215865, 2023 Feb 01.
Article En | MEDLINE | ID: mdl-36470847

Sodium-ion batteries (SIBs) with fast-charge capability and long lifespan could be applied in various sustainable energy storage systems, from personal devices to grid storage. Inspired by the disordered Rubik's cube, here, we report that the high-entropy (HE) concept can lead to a very substantial improvement in the sodium storage properties of hexacyanoferrate (HCF). An example of HE-HCF has been synthesized as a proof of concept, which has achieved impressive cycling stability over 50 000 cycles and an outstanding fast-charging capability up to 75 C. Remarkable air stability and all-climate performance are observed. Its quasi-zero-strain reaction mechanism and high sodium diffusion coefficient have been measured and analyzed by multiple in situ techniques and density functional theory calculations. This strategy provides new insights into the development of advanced electrodes and provides the opportunity to tune electrochemical performance by tailoring the atomic composition.

19.
Chem Sci ; 13(48): 14246-14263, 2022 Dec 14.
Article En | MEDLINE | ID: mdl-36545135

Zinc-ion batteries (ZIBs) have received much research attention due to their advantages of safety, non-toxicity, simple manufacture, and element abundance. Nevertheless, serious problems still remain for their anodes, such as dendrite development, corrosion, passivation, and the parasitic hydrogen evolution reaction due to their unique aqueous electrolyte system constituting the main issues that must be addressed, which are blocking the further advancement of anodes for Zn-ion batteries. Herein, we conduct an in-depth analysis of the problems that exist for the zinc anode, summarize the main failure types and mechanisms of the zinc anode, and review the main modification strategies for the anode from the three aspects of the electrolyte, anode surface, and anode host. Furthermore, we also shed light on further modification and optimization strategies for the zinc anode, which provide directions for the future development of anodes for zinc-ion batteries.

20.
Nano Lett ; 22(21): 8574-8583, 2022 Nov 09.
Article En | MEDLINE | ID: mdl-36279311

A highly stable interface for aqueous rechargeable Zn batteries is of importance to inhibit the growth of Zn dendrites and suppress the side reactions. In this work, we have developed a stable honeycomb-like ZnO passivation protective layer on the Zn surface, which is in situ generated with the assistance of a nonionic surfactant additive (polyethylene glycol tert-octylphenyl ether, denoted as PEGTE). The ZnO passivation layer can facilitate the uniform distribution of the electric field, guiding the uniform deposition of Zn2+ and inhibit the generation of dendrites. As a result, the symmetric cell using the electrolyte with PEGTE shows an excellent performance at high areal capacity, reflected by stable cycling for over 2400 h at 5 mAh/cm2 and 1300 h at 10 mAh/cm2. The full cell paired with V2O5 demonstrates a long lifespan for more than 600 cycles at a low negative/positive capacity ratio.

...