Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Cardiovasc Med ; 11: 1342173, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38516000

RESUMEN

Cardiomyopathy, a heterogeneous pathological condition characterized by changes in cardiac structure or function, represents a significant risk factor for the prevalence and mortality of cardiovascular disease (CVD). Research conducted over the years has led to the modification of definition and classification of cardiomyopathy. Herein, we reviewed seven of the most common types of cardiomyopathies, including Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC), diabetic cardiomyopathy, Dilated Cardiomyopathy (DCM), desmin-associated cardiomyopathy, Hypertrophic Cardiomyopathy (HCM), Ischemic Cardiomyopathy (ICM), and obesity cardiomyopathy, focusing on their definitions, epidemiology, and influencing factors. Cardiomyopathies manifest in various ways ranging from microscopic alterations in cardiomyocytes, to tissue hypoperfusion, cardiac failure, and arrhythmias caused by electrical conduction abnormalities. As pleiotropic Transcription Factors (TFs), the Krüppel-Like Factors (KLFs), a family of zinc finger proteins, are involved in regulating the setting and development of cardiomyopathies, and play critical roles in associated biological processes, including Oxidative Stress (OS), inflammatory reactions, myocardial hypertrophy and fibrosis, and cellular autophagy and apoptosis, particularly in diabetic cardiomyopathy. However, research into KLFs in cardiomyopathy is still in its early stages, and the pathophysiologic mechanisms of some KLF members in various types of cardiomyopathies remain unclear. This article reviews the roles and recent research advances in KLFs, specifically those targeting and regulating several cardiomyopathy-associated processes.

3.
Oxid Med Cell Longev ; 2017: 8370593, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29147465

RESUMEN

Diabetic cardiomyopathy (DCM) is associated with a greater risk of mortality in patients with diabetes mellitus. Currently, no specific treatment has been suggested for DCM treatment. This study demonstrated that myricetin (M) attenuated DCM-associated cardiac injury in mice subjected to streptozotocin (SZT) and in neonatal rat cardiomyocytes (NRCM) challenged with high glucose. In vivo investigation demonstrated 6 months of M treatment (200 mg/kg/d) significantly alleviated cardiac hypertrophy, apoptosis, and interstitial fibrosis. Mechanically, M treatment significantly increased the activity of Nrf2/HO-1 pathway, strengthening antioxidative stress capacity evidenced by reversed activities of GPx and SOD, and decreased MDA production. M treatment also inhibited IκBα/NF-κB pathway, resulting in reduced secretion of inflammation cytokines including IL-1ß, TNF-α, and IL-6. Besides, the TGFß/Smad3 signaling was also blunted in DCM mice treated with M. These beneficial effects of M treatment protected cardiomyocytes from apoptosis as shown by decreased TUNEL-positive nucleus, c-caspase 3, and Bax. Similar effects of M treatment could be reproduced in NRCM treated with high glucose. Furthermore, through silencing Nrf2 in NRCM, we found that the regulation of IκBα/NFκB by M was independent on its function on Nrf2. Thus, we concluded that M possesses potential protective effects on DCM through inhibiting IκBα/NFκB and enhancing Nrf2/HO-1.


Asunto(s)
Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas , Flavonoides/farmacología , Hemo Oxigenasa (Desciclizante)/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Inhibidor NF-kappaB alfa/metabolismo , FN-kappa B/metabolismo , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/prevención & control , Ratas , Transducción de Señal/efectos de los fármacos
4.
Mol Cell Biochem ; 428(1-2): 9-21, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28176247

RESUMEN

Apigenin is an important component of fruits and vegetables in human daily diets. Several cellular and animal models have been performed to demonstrate its anti-oxidant and anti-inflammatory bioactivities. However, the cardioprotective effects of apigenin in diabetic cardiomyopathy (DCM) remain unclear. In this study, we intended to explore the roles of apigenin in cardiac remodeling of DCM. Male C57BL/6 J mice were treated with streptozotocin (STZ, 50 mg/kg) for 5 consecutive days to induce DCM. The echocardiography and catheter-based measurements of hemodynamic parameters were performed to evaluate the cardiac function. Paraffin slices of harvested hearts were prepared for histological pathological analysis and TUNEL assay. Oxidative assay kits were used to detect Glutathione Peroxidase (GPx), Lipid Peroxidation Malondialdehyde (MDA), and Superoxide Dismutase (SOD). Western blot and real-time PCR were used for accessing the expressions of protein and mRNA. Diabetes mellitus exacerbated the cardiac dysfunction, fibrosis, and overaccumulation of 4-hydroxynonenal accompanying with down-regulation of Bcl2, GPx, and SOD, up-regulation of MDA, cleaved caspase3, and pro-apoptotic protein Bax, and contribution to the translocation of NF-κB. All these pathological changes could be effectively blunted by treatment of apigenin in vivo. Finally, H9c2 treated with high glucose or apigenin was used for further investigation of these effects in vitro; what is more, we also compared the effects between apigenin and Resveratrol in in vitro experiments. Our experiments have demonstrated that apigenin may be a potential drug for diabetic patients suffering from DCM.


Asunto(s)
Antioxidantes/administración & dosificación , Apigenina/administración & dosificación , Cardiotónicos/administración & dosificación , Cardiomiopatías Diabéticas/tratamiento farmacológico , Estreptozocina/efectos adversos , Animales , Antioxidantes/farmacología , Apigenina/farmacología , Cardiotónicos/farmacología , Línea Celular , Cardiomiopatías Diabéticas/inducido químicamente , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Peroxidación de Lípido/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Resveratrol , Estilbenos/administración & dosificación , Estilbenos/farmacología
5.
Curr Pharm Des ; 23(11): 1677-1686, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27779079

RESUMEN

Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors involved in the regulation of lipid metabolism, energy production, and inflammation. It is well established that all of the three isoforms of PPARs expressed in the cardiomyocytes, and that PPARs are closely involved in the regulation of lipid metabolism and energy homeostasis as well as many other different aspects in the heart. We think that PPARs are very important therapeutic targets for drug development, however, the drugs targeting at PPARs meet some trouble in clinical practice, especially the reported side effects related to heart failure. This review summarizes different functions and mechanisms of each isoform in cardiac hypertrophy and heart failure, for the reason that if more efforts are made to investigate the interactions among different isoforms, minimize the off-target effects, and avoid PPARs-independent side effects, we can develop safer and more effective PPAR agonists for the clinical practice in the near future.


Asunto(s)
Cardiomegalia/metabolismo , Insuficiencia Cardíaca/metabolismo , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Animales , Cardiomegalia/patología , Insuficiencia Cardíaca/patología , Humanos , Receptores Activados del Proliferador del Peroxisoma/agonistas
6.
PPAR Res ; 2016: 2198645, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27293418

RESUMEN

Peroxisome proliferator-activated receptor-γ (PPARγ) is a ligand-activated transcription factor belonging to the nuclear receptor superfamily, which plays a central role in regulating lipid and glucose metabolism. However, accumulating evidence demonstrates that PPARγ agonists have potential to reduce inflammation, influence the balance of immune cells, suppress oxidative stress, and improve endothelial function, which are all involved in the cellular and molecular mechanisms of cardiac fibrosis. Thus, in this review we discuss the role of PPARγ in various cardiovascular conditions associated with cardiac fibrosis, including diabetes mellitus, hypertension, myocardial infarction, heart failure, ischemia/reperfusion injury, atrial fibrillation, and several other cardiovascular disease (CVD) conditions, and summarize the developmental status of PPARγ agonists for the clinical management of CVD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA