Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38819094

RESUMEN

The common neurodegenerative disorder Alzheimer disease (AD) is characterized by memory dysfunction and cognitive decline in the elderly. Neuropathological features include aggregated ß-amyloid (Aß) accumulation, neuroinflammation, and oxidative stress in the brain. Daphnetin (DAPH), a natural coumarin derivative, has the potential for inhibiting inflammatory and oxidative responses. We explored neuroprotective roles of DAPH treatment in the APP/PS1 transgenic mouse AD model. DAPH ameliorated spatial learning disabilities in Morris water maze tests and reduced Aß deposition, assessed by immunohistochemistry. It also reduced the Aß content in supernatants of neurons from fetal APP/PS1 mice, assessed by cell-based soluble ELISA. Molecular docking and fluorescence resonance energy transfer-based assay results suggested that DAPH could directly inhibit BACE1 activity. Furthermore, in vitro experiments utilizing isolated rat neurons assessing RNA expression profiling, immunofluorescence, TUNEL assay, and Western-blot analysis, suggested the potential of DAPH for regulating BDNF and GM-CSF expression and mitigating Aß1-42-induced cortical injury, synaptic loss, and apoptosis. HO-1 and Nrf2 mRNA and protein expression were also increased in a dose-dependent manner. These results underscore the potential of DAPH as a neuroprotective agent in reversing memory deficits associated with AD and bolster its candidacy as a multitarget natural small-molecule drug for AD patients.

2.
Cancer Lett ; 592: 216761, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38490326

RESUMEN

Hepatocellular carcinoma (HCC) is a highly aggressive malignant tumor with limited treatment options and poor prognosis. In this study, we reveal the pivotal role of Stratifin (SFN), also recognized as 14-3-3σ, in driving HCC progression. Our investigation underscores a substantial upregulation of SFN within HCC tissues, manifesting a significant association with worse prognostic outcomes among HCC patients. In vitro and in vivo experiments reveal that SFN overexpression significantly amplifies proliferation, mitigates sorafenib-induced effects on HCC cells, and enhances tumorigenesis. While SFN silencing exerts converse effects on HCC progression. Additionally, we unveil a critical interaction between SFN and AKT, where SFN boosts AKT kinase activity by disrupting the binding of PHLPP2 and AKT, thereby intensifying the malignant progression of HCC cells. In conclusion, this study identifies the oncogenic role of SFN and elucidates the regulatory mechanism of the SFN/AKT axis in HCC, which may provide valuable insights into the mechanisms of HCC progression and potential targets for therapeutic intervention.


Asunto(s)
Proteínas 14-3-3 , Carcinoma Hepatocelular , Proliferación Celular , Progresión de la Enfermedad , Exorribonucleasas , Neoplasias Hepáticas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Animales , Femenino , Humanos , Masculino , Ratones , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Exorribonucleasas/metabolismo , Exorribonucleasas/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Pronóstico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Persona de Mediana Edad
3.
Signal Transduct Target Ther ; 9(1): 66, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472195

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide, and the development of non-alcoholic steatohepatitis (NASH) might cause irreversible hepatic damage. Hyperlipidemia (HLP) is the leading risk factor for NAFLD. This study aims to illuminate the causative contributor and potential mechanism of Kallistatin (KAL) mediating HLP to NAFLD. 221 healthy control and 253 HLP subjects, 62 healthy control and 44 NAFLD subjects were enrolled. The plasma KAL was significantly elevated in HLP subjects, especially in hypertriglyceridemia (HTG) subjects, and positively correlated with liver injury. Further, KAL levels of NAFLD patients were significantly up-regulated. KAL transgenic mice induced hepatic steatosis, inflammation, and fibrosis with time and accelerated inflammation development in high-fat diet (HFD) mice. In contrast, KAL knockout ameliorated steatosis and inflammation in high-fructose diet (HFruD) and methionine and choline-deficient (MCD) diet-induced NAFLD rats. Mechanistically, KAL induced hepatic steatosis and NASH by down-regulating adipose triglyceride lipase (ATGL) and comparative gene identification 58 (CGI-58) by LRP6/Gɑs/PKA/GSK3ß pathway through down-regulating peroxisome proliferator-activated receptor γ (PPARγ) and up-regulating kruppel-like factor four (KLF4), respectively. CGI-58 is bound to NF-κB p65 in the cytoplasm, and diminishing CGI-58 facilitated p65 nuclear translocation and TNFα induction. Meanwhile, hepatic CGI-58-overexpress reverses NASH in KAL transgenic mice. Further, free fatty acids up-regulated KAL against thyroid hormone in hepatocytes. Moreover, Fenofibrate, one triglyceride-lowering drug, could reverse hepatic steatosis by down-regulating KAL. These results demonstrate that elevated KAL plays a crucial role in the development of HLP to NAFLD and may be served as a potential preventive and therapeutic target.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Serpinas , Humanos , Ratones , Ratas , Animales , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Inflamación/metabolismo , Ratones Transgénicos
4.
J Adv Res ; 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38311007

RESUMEN

INTRODUCTION: Bisphenol A (BPA) is a widespread environmental pollutant which has serious toxic effects on organisms. One of the crucial trace elements is selenium (Se), whose shortage can harm biological tissues and enhance the toxicity of contaminants, in which apoptosis and autophagy are core events. OBJECTIVES: An in vivo model was established to investigate the effects of BPA and low-Se on chicken pancreatic tissue, and identify the possible potential molecular mechanism. METHODS: A total of 80 1-day-old broiler chickens (Xinghua Chicken Farm, Harbin, China) were stochastically divided into 4 groups (n = 20/group): Control group, BPA group, low-Se group, and low-Se + BPA group. Pancreatic tissue was collected at day 42 to detect changes in markers. RESULTS: First, the data showed that BPA and low-Se exposure gave rose to structural abnormalities in pancreatic tissue, oxidative stress, mitochondrial dysfunction and homeostasis imbalance, apoptosis and mitophagy. In addition, the co-exposure of BPA and low-Se caused the most serious damage to pancreatic tissue. In terms of mechanism, it was found that apoptosis and mitophagy induced by BPA and low-Se were related to the activation of PTEN/PI3K/AKT/mTOR pathway. CONCLUSION: In summary, the study found that BPA and low-Se exacerbated mitochondria damage, apoptosis and mitophagy by regulating the PTEN/PI3K/AKT/mTOR pathway.

5.
Arch Biochem Biophys ; 751: 109847, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38052383

RESUMEN

Exposure to lipopolysaccharide (LPS) can lead to inflammation in a variety of tissues and organs. Selenium (Se) plays a crucial role in mitigating inflammatory damage. Compared with inorganic selenium, organic selenium, such as selenomethionine (SeMet), has the advantages of a higher absorption rate and lower toxicity in animals. This study examined the protective effects of SeMet on eggshell gland tissue damage caused by LPS. Hy-Line Brown laying hens were chosen as the experimental animals and were randomly assigned to four groups: control group (C), lipopolysaccharide group (LPS), SeMet group (Se), and SeMet + lipopolysaccharide group (Se + LPS). H&E staining and transmission electron microscope were performed to observe the pathological changes of eggshell glands, oxidative stress related indicators were measured using relevant kits, qRT‒PCR and western blotting were used to evaluate the mRNA and protein levels of the Nrf2 pathway, necroptosis, and inflammation related indicators. The results showed that LPS treatment increased the content of malondialdehyde (MDA), decreased the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX), and decreased the content of glutathione (GSH). LPS increased the levels of Keap1, RIPK1, RIPK3, MLKL, TNF-α, COX-2, and NF-κB, while decreasing the levels of HO-1, NQO1, Nrf2, and Caspase-8. However, SeMet treatment effectively reversed the changes of the above indicators, indicating that SeMet alleviates eggshell gland cell necroptosis-mediated inflammation induced by LPS via regulating the Keap1/Nrf2/HO-1 pathway. This study elucidated the mechanism by which SeMet alleviates LPS-induced eggshell gland tissue damage in Hy-Line Brown laying hens and provided a new direction for expanding the application of SeMet in the feeding and production of laying hens.


Asunto(s)
Selenio , Selenometionina , Femenino , Animales , Selenometionina/farmacología , Selenometionina/metabolismo , Lipopolisacáridos/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Pollos/metabolismo , Selenio/farmacología , Selenio/metabolismo , Cáscara de Huevo/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Necroptosis , Inflamación/metabolismo , Estrés Oxidativo , Glutatión/metabolismo , Antioxidantes/farmacología
6.
Cell Death Discov ; 9(1): 416, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37973900

RESUMEN

It has been established that monotherapy yields limited efficacy in treating hepatocellular carcinoma (HCC), especially advanced HCC. Increasing evidence from preclinical studies and clinical trials indicates that combining multiple drugs can potentially refine treatment efficacy. Accordingly, it is crucial to explore more effective clinically feasible combination therapies to enhance the treatment outcomes of HCC patients. This study evaluated the antitumor efficacy and safety of combination therapy involving aspirin and lenvatinib in HCC. Through in vitro and in vivo assays, we demonstrated that this combination yielded stronger antitumor effects compared to lenvatinib or aspirin monotherapy. Furthermore, no significant adverse events were observed in an HCC mouse model during treatment. Mechanistic studies revealed that aspirin plus lenvatinib could target multiple oncogenes and tumor suppressors, affecting diverse signaling pathways in various biological processes conducive to antitumor effects. Overall, our findings suggest that aspirin plus lenvatinib could serve as a promising combination regimen to improve the therapeutic outcomes of HCC.

7.
Aquat Toxicol ; 264: 106739, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37918148

RESUMEN

The wide application of Avermectin (AVM) has caused pollution of surface water and damage to non-target organisms. A growing body of evidence supports the most prominent role of Eucalyptol (EUC) is antioxidation. To the purpose of explore the injury mechanism of Avermectin on grass carp hepatocytes and the antagonistic effect of Eucalyptol, 5.7 µM AVM and/or 20 µM EUC were used to treat grass carp hepatocytes for 24 h to establish hepatocyte exposure model. The results showed that Avermectin exposure significantly increased the contents of reactive oxygen species (ROS) and malondialdehyde (MDA) in cells, reduced the activities of superoxide dismutase (SOD), catalase (CAT), and total antioxidant capacity (T-AOC). Also, the expressions of NLRP3 inflammasome-related genes including NLRP3, ASC, and Caspase-1, the necroptosis-related genes including RIPK1, RIPK3, and MLKL and apoptotic genes including Bax, Caspase-3, and Caspase-9 were all up-regulated. Meanwhile, the expressions of Caspase-8 and Bcl-2 were significantly decreased upon exposure to Avermectin. However, the toxicity was significantly alleviated with the treatment of EUC or N-acetyl-l-cysteine (NAC). The above results indicated that eucalyptol alleviated AVM exposure-induced apoptosis and necroptosis of grass carp hepatocytes by regulating the ROS/NLRP3 signaling pathway.


Asunto(s)
Carpas , Contaminantes Químicos del Agua , Animales , Especies Reactivas de Oxígeno/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR , Eucaliptol/farmacología , Carpas/metabolismo , Necroptosis , Contaminantes Químicos del Agua/toxicidad , Apoptosis , Antioxidantes/metabolismo , Hepatocitos/metabolismo
8.
Fish Shellfish Immunol ; 142: 109101, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37758100

RESUMEN

The toxic heavy metal lead is widely found in rivers and soils as an environmental pollutant, posing a threat to the health of aquatic organisms. Selenium is an essential trace element and a powerful antioxidant that has been shown to have anti-inflammatory and antioxidant properties as well as alleviating heavy metal poisoning. Many studies have shown that lead poisoning produces inflammatory responses and damage to the kidneys of a wide range of animals, but the effects on cellular pyroptosis and immune function and selenium antagonism in CIK cells are not clear. In this study, 500 µM Pb and 20 nM Se were applied to grass carp kidney cells, and the results showed that Pb exposure to CIK cells resulted in oxidative stress, activation of the IRAK1/TAK1/IKK pathway, up-regulation of the expression of cellular pyroptosis markers GSDMD and NLRP3, and cellular pyroptosis of CIK cells, as well as up-regulation of IL-1ß and IL-18, and the generation of cellular inflammatory response. In contrast, Se treatment significantly reduced the ROS level, the expression of cellular pyroptosis markers GSDMD, NLRP3 and inflammatory element IL-1ß and IL-18. Taken together, Se alleviated cellular pyroptosis and immune dysfunction caused by Pb exposure through oxidative stress and activation of the IRAK1/TAK1/IKK pathway. This study complements the harmful effects of the heavy metal Pb on fish and the real-life application of selenium in the healthy culture of fish as a reference will be provided.


Asunto(s)
Células Asesinas Inducidas por Citocinas , Selenio , Animales , Selenio/farmacología , Antioxidantes , Piroptosis , Interleucina-18 , Células Asesinas Inducidas por Citocinas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Plomo/toxicidad , Inflamación/inducido químicamente
9.
Sci Total Environ ; 905: 166890, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37683847

RESUMEN

Bisphenol A (BPA), a component of plastic products, can penetrate the blood-brain barrier and pose a threat to the nervous system. Selenium (Se) deficiency can also cause nervous system damage. Resulting from the rapid industrial development, BPA pollution and Se deficiency often coexist. However, it is unclear whether brain damage in chickens caused by BPA exposure and Se deficiency is related to the crosstalk disorder between mitophagy and apoptosis. In this study, 60 chickens (1 day old) were fed with a diet that contained 20 mg/kg BPA but was insufficient in Se (only 0.039 mg/kg) for 42 days to establish a chicken brain injury model. In vitro, the primary chicken embryo brain neurons were treated for 24 h with Se-deficient medium containing 75 µM BPA. The results showed that BPA exposure and Se deficiency inhibited the expression of the mitochondrial respiratory chain complex in brain neurons, and a large number of mitochondrial reactive oxygen species were released. Furthermore, the expression levels of mitochondrial fusion proteins (OPA1, Mfn1, and Mfn2) decreased, while the expression levels of mitochondrial fission proteins (Drp1, Mff, and Fis1) increased, thus exacerbating mitochondrial division. In addition, the results of immunofluorescence and flow cytometry analysis, as well as the elevated expressions of mitophagy related genes (PINK1, Parkin, ATG5, and LC3II/I) and pro-apoptotic markers (Bax, Cytc, Caspase3, and Caspase9) indicated that BPA exposure and Se deficiency disrupted the crosstalk homeostasis between mitophagy and apoptosis. However, this crosstalk homeostasis was restored after Mito-Tempo and Rapamycin treatment. In contrast, 3-methyladenine treatment exacerbated this crosstalk disorder. In conclusion, BPA exposure and Se deficiency can induce mitochondrial reactive oxygen species bursts and disorders of mitochondrial dynamics by destroying the mitochondrial respiratory chain complex. The result is indicative of an imbalance in mitochondrial autophagy and apoptosis crosstalk homeostasis, which damages the chicken brain.


Asunto(s)
Compuestos de Bencidrilo , Lesiones Encefálicas , Fenoles , Selenio , Embrión de Pollo , Animales , Mitofagia , Especies Reactivas de Oxígeno/metabolismo , Pollos/metabolismo , Selenio/farmacología , Apoptosis , Homeostasis
10.
Chemosphere ; 341: 139974, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37648165

RESUMEN

Tetrabromobisphenol A (TBBPA) is the most-produced brominated flame retardant, which can be found in various industrial and household products. Studies have shown that TBBPA has hepatotoxicity, and could pose a risk to aquatic animals. The endoplasmic reticulum (ER) and mitochondria are two important organelles that are highly dynamic in cells, the homeostasis and orchestrated interactions of which are crucial to maintaining cellular function. The aim of this study was to explore the involvement of ER-mitochondria crosstalk in TBBPA-induced toxicity in aquatic animals' hepatocytes. Herein, we exposed grass carp hepatocytes (L8824 cells) to different concentrations of TBBPA. Our experimental results suggested that TBBPA exposure suppressed cell viability and caused apoptosis of L8824 cells. TBBPA treatment upregulated expressions of ER stress markers, increased reactive oxygen species (ROS) and mitochondrial Ca2+ levels, and reduced mitochondrial membrane potential (MMP) in L8824 cells. However, the pretreatment of 2-aminoethoxydiphenyl borate (2-APB) could alleviate TBBPA-induced cell apoptosis, ER stress, and mitochondrial dysfunction. Additionally, 2-APB pretreat relieved ER-mitochondrial contact and the expression of ER-mitochondrial function-related genes induced by high-dose TBBPA. Taken together, these results indicated that TBBPA caused grass carp hepatocyte apoptosis by destroying ER-mitochondrial crosstalk.


Asunto(s)
Apoptosis , Bifenilos Polibrominados , Animales , Hepatocitos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Bifenilos Polibrominados/toxicidad , Bifenilos Polibrominados/metabolismo , Mitocondrias/metabolismo , Retículo Endoplásmico/metabolismo
11.
Cell Rep ; 42(8): 112984, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37578861

RESUMEN

Inadequate remnant volume and regenerative ability of the liver pose life-threatening risks to patients after partial liver transplantation (PLT) or partial hepatectomy (PHx), while few clinical treatments focus on safely accelerating regeneration. Recently, we discovered that supplementing 5-aminolevulinate (5-ALA) improves liver cold adaptation and functional recovery, leading us to uncover a correlation between 5-ALA metabolic activities and post-PLT recovery. In a mouse 2/3 PHx model, 5-ALA supplements enhanced liver regeneration, promoting infiltration and polarization of anti-inflammatory macrophages via P53 signaling. Intriguingly, chemokine receptor CX3CR1 functions to counterbalance these effects. Genetic ablation or pharmacological inhibition of CX3CR1 (AZD8797; phase II trial candidate) augmented the macrophagic production of insulin-like growth factor 1 (IGF-1) and subsequent hepatocyte growth factor (HGF) production by hepatic stellate cells. Thus, short-term treatments with both 5-ALA and AZD8797 demonstrated pro-regeneration outcomes superior to 5-ALA-only treatments in mice after PHx. Overall, our findings may inspire safe and effective strategies to better treat PLT and PHx patients.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina , Regeneración Hepática , Animales , Ratones , Ácido Aminolevulínico/farmacología , Proliferación Celular , Modelos Animales de Enfermedad , Hepatocitos/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Hígado/metabolismo , Regeneración Hepática/fisiología
12.
Fish Shellfish Immunol ; 140: 108985, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37536468

RESUMEN

Pesticide mixtures can reduce pest resistance, however, their overuse severely threatens aquatic animal survival and public health. Avermectin (AVM) and imidacloprid (IMI) are potent insecticides often employed in agriculture. By inducing oxidative stress, these chemicals can induce cell death. Here, we evaluated the combined toxicity of AVM and IMI on EPC cells based on the concept of toxicity units (TU). We established EPC cell models exposed to AVM and IMI alone and in combination. The results showed that AVM and IMI had additive effects on the toxicity of EPC cells. Meanwhile, the co-exposure of AVM and IMI exacerbated oxidative stress and induced excessive production of reactive oxygen species (ROS), triggered Keap1/Nrf2/TXNIP axis, caused DNA damage and increased the expression of genes related to pyroptosis. In addition, co-exposure to AVM and IMI caused immunosuppression of EPC cells. The ROS inhibitor N-Acetyl-l-cysteine (NAC) can dramatically reverse these alterations brought on by AVM and IMI co-exposure. The findings above conclude that co-exposure to AVM and IMI causes DNA damage, pyroptosis, and immunosuppression in EPC cells through the ROS-mediated Keap1/Nrf2/TXNIP pathway. This study revealed the joint toxicity of AVM and IMI on EPC cells, and reminded people to consider its impact on aquatic animals when using pesticide mixtures.


Asunto(s)
Carcinoma , Plaguicidas , Animales , Especies Reactivas de Oxígeno/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Piroptosis , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Estrés Oxidativo , Plaguicidas/toxicidad , Daño del ADN
13.
Environ Toxicol ; 38(4): 820-832, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36629057

RESUMEN

Tetrabromobisphenol A (TBBPA) is a common environmental pollutant which has multi-organ toxicity to mammals. Eucalyptol (EUC) has super antioxidant biological activity. However, in this experimental study, we probed into the mechanism of toxic of TBBPA exposure on Grass carp hepatocytes (L8824 cells) and the antagonistic impact of EUC on TBBPA. We treated L8824 cells with 8 µg/ml TBBPA and/or 20 µM EUC for 24 h in this test research. The experiment results suggested that TBBPA exposure induced elevated levels of reactive oxygen species (ROS), led to oxidative stress, decreased SOD and CAT activities, decreased GSH and T-AOC contents, exacerbated MDA accumulation, activated ASK1/JNK signaling pathway, and further increased the contents of mitochondrial dependent apoptosis pathway related indicators (Cyt-C, Bax, Caspase 9, Caspase 3), while Bcl-2 expression decreased. In addition, TBBPA exposure induced increased expression of TNF-α, IL-6, IL-1ß, and decreased expression of IL-2, IFN-γ, Hepcidin, ß-defensin, LEAP2. The oxidative stress level, ASK1/JNK signal pathway expression level, apoptosis ratio and cellular immune function of cells exposed to EUC alone did not change significantly. Combined exposure of TBBPA and EUC significantly reduced the proportion of apoptosis and restored cellular immune function. Therefore, these results suggest that EUC can effectively antagonize TBBPA-induced apoptosis and immune dysfunction of L8824 cells by regulating ROS/ASK1/JNK signaling pathway.


Asunto(s)
Carpas , Sistema de Señalización de MAP Quinasas , Animales , Especies Reactivas de Oxígeno/metabolismo , Eucaliptol/farmacología , Carpas/metabolismo , Hepatocitos/metabolismo , Apoptosis , Mamíferos/metabolismo
14.
Artículo en Inglés | MEDLINE | ID: mdl-36370998

RESUMEN

Trimethyltin chloride (TMT) is an organotin-based contaminant present in the water environment that poses a great threat to aquatic organisms and humans. The liver is the detoxification organ of the body and TMT exposure accumulates in the liver. Tea polyphenol (TP) is a natural antioxidant extracted from tea leaves and has been widely used as a food and feed additive. To investigate the mechanism of toxicity caused by TMT exposure on grass carp hepatocytes (L8824 cells) and the mitigating effect of TP, we established a hepatocyte model of TMT toxicity and/or TP treatment. L8824 cells were treated with 0.5 µM of TMT and/or 4 µg/mL of TP for 24 h and assayed for relevant indices. The results showed that TMT exposure caused oxidative stress, resulting in increased intracellular ROS content, resulting in intracellular ROS accumulation and increased MDA content, and inhibiting the activities of T-AOC, SOD, CAT, and GSH. Meanwhile, TMT exposure activated the endoplasmic reticulum apoptotic signaling pathway, resulting in abnormal expression of GRP78, ATF-6, IRE1, PERK, Caspase-3 and Caspase-12. In addition, TMT exposure also led to up-regulation of cytokines IL-1ß, IL-6, TNF-α, and decreased expression of IL-2, IFN-γ, and antimicrobial peptides Hepcidin, ß-defensin, and LEAP2. However, the addition of TP could mitigate the above changes. In conclusion, TP can alleviate TMT exposure-mediated hepatotoxicity by inhibiting ROS/ER stress in L8824 cells. In addition, this trial enriches the cytotoxicity study of TMT and provides a new theoretical basis for the use of TP as a mitigating agent for TMT.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Polifenoles , Humanos , Polifenoles/farmacología , Especies Reactivas de Oxígeno , Terapia de Inmunosupresión , Apoptosis , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control ,
15.
Fish Shellfish Immunol ; 131: 1075-1084, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36396070

RESUMEN

Atrazine (ATR) is a herbicide widely used in grass crops. The pollution of the soil and water environment is extremely harmful to aquatic animals and their offspring. iNOS/NO upregulation, DNA damage and cellular autophagy affect the immune function of fish liver cells. The effects of ATR at exposure doses on grass carp hepatocytes in terms of autophagy and DNA damage effects in genotoxicity, as well as the antagonistic effects of TAN on the above phenotypes and the internal mechanisms are not known. Therefore, we constructed control (Con group), ATR exposure (ATR group), TAN exposure (TAN group) and mixed group (ATR + TAN group) models on grass carp hepatocytes. Validation was performed by comet assay, MDC staining, qRT-PCR and protein blotting assay as well as iNOS/NO indicator levels and expression of immune factors as these experimental methods. Our data indicate that iNOS/NO assay kit measured that ATR treatment resulted in a significant increase in iNOS/NO activity and levels in grass carp hepatocytes (p < 0.05). We also found that NO/iNOS/NF-κB pathway genes were significantly activated (p < 0.05) at the exposure dose of ATR (3 µg mL-1). In addition, the proportion of cells that died due to DNA damage, autophagy, and immunotoxic effects was significantly increased at the exposure dose of ATR. Comet assay protein blotting detected increased DNA damage in cells at the ATR exposure dose (p < 0.05). MDC staining and qRT-PCR and protein blotting to detect the proportion of autophagic cells and autophagy-related genes also appeared upregulated at the exposed dose of ATR (p < 0.05). In brief, this study showed that ATR exposure caused cellular DNA damage and autophagy via the NO/iNOS/NF-κB axis, which led to immunotoxic effects and eventual death of grass carp hepatocytes. The present study facilitates the demonstration of the molecular mechanism of TAN alleviation of ATR cytotoxicity from the perspective of NO-mediated iNOS/NF-κB axis. It provides insights into the protection of farmed fish from agricultural contaminants and opens up new horizons in the use of natural plant-derived monomers for the clinical treatment of antagonistic triazine pesticide poisoning.


Asunto(s)
Atrazina , Carpas , Daño del ADN , Hepatocitos , Animales , Atrazina/toxicidad , Autofagia , Carpas/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Inmunidad , FN-kappa B/metabolismo , Transducción de Señal
16.
Fish Shellfish Immunol ; 130: 490-500, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36162772

RESUMEN

Diisobutyl phthalate (DiBP), one of the commonly used plasticizers in industry, is an endocrine disruptor and environmental contaminant that can persist in water and threaten the health of aquatic creatures. Eucalyptol (Euc), a monoterpenoid extracted from plants, has been proved to have anti-inflammatory, antioxidant, and detoxification properties. However, the protective mechanism of Euc against cell injury caused by DiBP exposure and the involvement of apoptosis, autophagy, and immunity remains unknown. In the current investigation, 27.8 µg/mL DiBP or/and 20 µM Euc has been applied to Ctenopharyngodon idellus kidney (CIK) cells for 24 h. The findings showed that exposure to DiBP raised intracellular ROS levels, inducing oxidative stress, and enhanced the rate of apoptosis as well as the expression of the apoptotic markers Bax, Caspase3, Caspase9, and Cytc while decreasing the expression of Bcl-2. Furthermore, DiBP inhibited IL-2, IFN-γ, Hepcidin-1, and ß-defensin expression and elevated TNF-α, and IL-1ß levels, causing immune dysfunction. DiBP and Euc co-treatment significantly activated the Keap1/Nrf2/HO-1 pathway, restored antioxidant enzyme activity, and elevated autophagy pathway-associated genes ATG5, Beclin1, and LC3B decreased p62 expression, enhanced cell autophagy, reduced apoptosis, and improved immunity. In conclusion, Euc promotes autophagy, alleviates DiBP-induced apoptosis, and improves immunological dysfunction in CIK cells by regulating the Keap1/Nrf2/HO-1 pathway. These results demonstrated the threat of DiBP exposure to fish while providing a theoretical foundation for using Euc in aquaculture.


Asunto(s)
Carpas , Disruptores Endocrinos , beta-Defensinas , Animales , Antioxidantes/farmacología , Apoptosis , Autofagia , Beclina-1 , Carpas/metabolismo , Dibutil Ftalato/análogos & derivados , Eucaliptol/farmacología , Hepcidinas/metabolismo , Interleucina-2 , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Riñón/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Plastificantes , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Agua , Proteína X Asociada a bcl-2/metabolismo , beta-Defensinas/metabolismo
17.
Math Biosci Eng ; 18(6): 8857-8882, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34814326

RESUMEN

In this paper, in order to explore the inhibition mechanism of algicidal bacteria on algae, we constructed an aquatic amensalism model with non-selective harvesting and Allee effect. Mathematical works mainly gave some critical conditions to guarantee the existence and stability of equilibrium points, and derived some threshold conditions for saddle-node bifurcation and transcritical bifurcation. Numerical simulation works mainly revealed that non-selective harvesting played an important role in amensalism dynamic relationship. Meanwhile, we proposed some biological explanations for transcritical bifurcation and saddle-node bifurcation from the aspect of algicidal bacteria controlling algae. Finally, all these results were expected to be useful in studying dynamical behaviors of aquatic amensalism ecosystems and biological algae controlling technology.


Asunto(s)
Ecosistema , Modelos Biológicos , Simulación por Computador
18.
Cell Oncol (Dordr) ; 44(2): 279-295, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33034848

RESUMEN

PURPOSE: Multiple circular RNAs (circRNAs) have been reported to be dysregulated in hepatocellular carcinoma (HCC). However, their functions and modes of action are still largely unclear. Identifying key circRNAs and revealing their potential functions and molecular mechanisms is considered important for improving the diagnosis and treatment of HCC. METHODS: Dysregulated circRNAs in HCC were identified through integration of three human HCC circRNAs microarray datasets (GSE94508, GSE97332 and GSE 78520), followed by qRT-PCR validation in primary HCC tissues and cell lines. circRNA characteristics were verified through Sanger sequencing, RNase R treatment, northern blotting and intracellular localization analyses. In addition, circRNA functions in HCC development were assessed using CCK8, colony formation, EDU incorporation, flow cytometry, transwell and scratch wound healing assays in vitro and tumor xenograft assays in vivo. Next, underlying molecular mechanisms in HCC were assessed using dual-luciferase reporter, RNA pull-down, RNA immunoprecipitation and western blotting assays. RESULTS: We found that a novel circular RNA, circ-102,166, was down-regulated in HCC and that its expression level was significantly associated with multiple clinicopathologic characteristics, as well as the clinical prognosis of HCC patients. In vitro and in vivo experiments revealed that circ-102,166 overexpression significantly inhibited the proliferation, invasion, migration and tumorigenicity of HCC cells. Furthermore, we found that circ-102,166 can bind to miR-182 and miR-184 to regulate the expression of several of their downstream targets (FOXO3a, MTSS1, SOX7, p-RB and c-MYC). CONCLUSION: Our data revealed a tumor-suppressing role of circ-102,166 in HCC. Down-regulation of circ-102,166 enhanced the proliferation and invasion of HCC cells by releasing the oncomiRs miR-182 and miR-184.


Asunto(s)
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , MicroARNs/metabolismo , ARN Circular/metabolismo , Secuencia de Bases , Carcinogénesis/genética , Carcinogénesis/patología , Movimiento Celular/genética , Proliferación Celular/genética , Regulación hacia Abajo/genética , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Humanos , MicroARNs/genética , Invasividad Neoplásica , Pronóstico , ARN Circular/genética
19.
FEBS Lett ; 589(1): 68-76, 2015 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-25433291

RESUMEN

Although microRNA-1 (miR-1) is a known liver cancer suppressor, the role of miR-1 in apoptosis of hepatoma cells has remained largely unknown. Our study shows that ectopic miR-1 overexpression induced apoptosis of liver hepatocellular carcinoma (HepG2) cells. Apoptosis inhibitor 5 (API-5) was found to be a potential regulator of miR-1 induced apoptosis, using a bioinformatics approach. Furthermore, an inverse relationship between miR-1 and API-5 expression was observed in human liver cancer tissues and adjacent normal liver tissues. Negative regulation of API-5 expression by miR-1 was demonstrated to promote apoptosis of HepG2 cells. Our study provides a novel regulatory mechanism of miR-1 in the apoptosis of hepatoma cells.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/biosíntesis , Apoptosis , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , MicroARNs/biosíntesis , Proteínas de Neoplasias/biosíntesis , Proteínas Nucleares/biosíntesis , ARN Neoplásico/biosíntesis , Proteínas Reguladoras de la Apoptosis/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Regulación Neoplásica de la Expresión Génica/genética , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , MicroARNs/genética , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , ARN Neoplásico/genética
20.
Tumour Biol ; 35(3): 2681-6, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24197986

RESUMEN

KIAA0101 always overexpresses in tumor tissues, which is also a marker of tumor recurrence. This study aims to explore whether overexpression of KIAA0101 mRNA in peripheral blood mononuclear cells (PBMCs) could act as a noninvasive and predictive biomarker of hepatic cancer. Real-time polymerase chain reaction (RT-PCR) was employed to detect KIAA0101 mRNA expression in PBMCs isolated from 93 hepatic cancer patients and 55 healthy individuals. The diagnostic sensitivity and specificity of KIAA0101 mRNA, CEA, and CD44V were analyzed and compared. A multivariate logistic regression analysis was utilized to analyze risk factors for overall survival of hepatic cancer patients. A concordance analysis was employed to compare the overexpression of KIAA0101 mRNA with clinicopathological diagnosis. All of the 93 hepatic cancer patients were followed up routinely at least 36 months or until death to analyze the 3-year overall survival rate. The results indicated that KIAA0101 mRNA expression was increased significantly in hepatic patients' PBMCs, when compared with that of healthy individuals (P < 0.05). Both the sensitivity and specificity of KIAA0101 mRNA in PBMCs were enhanced significantly compared with those of the CEA and CD44V biomarkers. The multivariate logistic regression analysis indicated that the KIAA0101 mRNA level and pTNM stage were significantly related with the overall survival of the hepatic patients. There was a better concordance between KIAA0101 mRNA overexpression and clinicopathological diagnosis for hepatic cancer (kappa = 0.914, P < 0.001). KIAA0101 mRNA overexpression in PBMCs decreased the 3-year survival rate significantly. In conclusion, overexpression of KIAA0101 mRNA in PBMCs could act as a predictive biomarker for hepatic cancer and has a better sensitivity and specificity.


Asunto(s)
Biomarcadores de Tumor/análisis , Proteínas Portadoras/biosíntesis , Leucocitos Mononucleares/metabolismo , Neoplasias Hepáticas/sangre , Proteínas Portadoras/sangre , Proteínas Portadoras/genética , Proteínas de Unión al ADN , Femenino , Humanos , Estimación de Kaplan-Meier , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/mortalidad , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Pronóstico , ARN Mensajero/análisis , Reacción en Cadena en Tiempo Real de la Polimerasa , Sensibilidad y Especificidad , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...