Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Polymers (Basel) ; 16(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38891552

RESUMEN

The enhancement of display performance and durability in polymer-stabilized vertical alignment liquid crystal and the liquid crystal are negative liquid crystals, which can be vertically aligned under the action of a vertical orientation layer and an electric field. Devices (PSVA LCDs) are crucial for advancing LCD technology. This study aims to investigate the electro-optical characteristics of PSVA LCDs by varying polymerization monomer concentrations. Using both simulations via TechWiz LCD 3D and experimental methods, such as polymer-induced phase separation, we developed an optoelectronic testing framework to assess voltage transmittance and response times. In our main findings, we show that an increase in polymeric monomer concentration from 3% to 7% resulted in a 67% increase in threshold voltage and a 44% decrease in saturation voltage. The on-state response time increased by about a factor of three, while the off-state response time decreased by about a factor of three. The alignment of our simulation results with experimental data validates our methodology, offering the potential of simulation tools as a pivotal resource in the PSVA LCDs. The alignment of our simulation results with experimental data validates our methodology, offering the potential of simulation tools as a pivotal resource in the PSVA LCDs. These advancements promise significant improvements in PSVA LCD performance and durability.

2.
Clin Cardiol ; 46(12): 1538-1543, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37681461

RESUMEN

BACKGROUND: Previous studies show that oxidative stress is important in heart failure (HF) pathogenesis. The composite dietary antioxidant index (CDAI), which reflects the antioxidant profile of nutrient supplements, is associated with cardiovascular mortality risk. However, the association between CDAI and the risk of HF remains unknown. HYPOTHESIS: In this study, we investigated the relationship between CDAI and HF risk using National Health and Nutritional Examination Survey (NHANES) data. METHODS: The data of participants aged >40 years old from the NHNANES between 2001 and 2018 were obtained and used to assess the relationship between CDAI and the risk of HF. Logistic regression was used to calculate the odds ratio (OR) of CDAI for the risk of HF. RESULTS: A total of 29 101 participants were divided into the HF (n = 1419; 4.88%) and non-HF groups (n = 27 682; 95.12%), HF group participants had lower CDAI than the non-HF group (-0.32 ± 0.14 vs. 0.67 ± 0.05, p < .0001). Compared with the lowest CDAI quartile (Q1), the OR for HF risk was 0.88 (0.68-1.13) for Q2 (p = .30), 0.77 (0.61-0.99) for Q3 (p = .04), and 0.68 (0.52-0.89) for Q4 (p = .01). CONCLUSIONS: CDAI was negatively associated with the risk of HF. Our findings show that the intake of an antioxidant-rich dietary is a potential method to reduce the risk of HF.


Asunto(s)
Antioxidantes , Insuficiencia Cardíaca , Humanos , Adulto , Estudios Transversales , Encuestas Nutricionales , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/epidemiología , Dieta/efectos adversos
3.
J Biochem Mol Toxicol ; 37(11): e23458, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37455625

RESUMEN

Fibrosis and abnormal expression of connexin 43 (Cx43) in the ventricle play vital roles in ventricular arrhythmias (VAs) after myocardial infarction (MI). Muscone, an active monomer of heart-protecting musk pill, has various biological activities, but its effect on susceptibility to VAs in rats with MI has not been determined. In the present study, we investigated the effects of muscone on ventricular inflammation, fibrosis, Cx43 expression, and the occurrence of VAs after MI. An MI model was established by ligating the proximal left anterior descending coronary artery. Then, the MI model rats were administered muscone (2 mg/kg/day) or vehicle (saline)via intragastric injection for 14 days. Cardiac function was evaluated by echocardiography, and an in vivo electrophysiological study was performed on Day 14. Cardiac inflammation, fibrosis, and Cx43 expression were determined by histochemical analysis and western blot analysis. Our results indicated that muscone treatment significantly improved cardiac function and inhibited ventricular inflammation, fibrosis, and nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 3 (NLRP3) inflammasome activation. Electrocardiogrphy and electrophysiology studies showed that muscone shortened the QRS interval, QT interval, QTc interval, and action potential duration; prolonged the effective refractory period; and reduced susceptibility to VAs in rats after MI. Furthermore, Cx43 expression in the BZ was increased by muscone treatment, and this change was coupled by inhibition of the NLRP3/IL-1ß/p38 MAPK pathway. Taken together, our results demonstrated that muscone reduces susceptibility to VA, mainly by decreasing ventricular inflammation and fibrosis, and attenuates abnormal Cx43 expression by inhibiting NLRP3 inflammasome activation after myocardial infarction in rats.


Asunto(s)
Inflamasomas , Infarto del Miocardio , Ratas , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Conexina 43/farmacología , Transducción de Señal , Infarto del Miocardio/metabolismo , Arritmias Cardíacas/tratamiento farmacológico , Arritmias Cardíacas/etiología , Inflamación , Fibrosis
4.
Biomed Pharmacother ; 165: 115083, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37413902

RESUMEN

OBJECTIVES/AIMS: Inflammation is crucial in structural and electrical remodeling after myocardial infarction (MI), affecting cardiac pump function and conduction pathways. Phloretin possesses an anti-inflammation role by inhibiting the NLRP3/Caspase-1/IL-1ß pathway. However, the effects of Phloretin on cardiac contractile and electrical conduction function after MI remained unclear. Therefore, we aimed to investigate the potential role of Phloretin in a rat model of MI. METHODS: Rats were assigned into four groups: Sham, Sham+Phloretin, MI and MI+Phloretin, with ad libitum food and water. In the MI and MI+Phloretin groups, the left anterior descending coronary artery was occluded for 4 weeks, while the Sham and Sham+Phloretin groups received sham operation. The Sham+Phloretin group and the MI+Phloretin group received oral administration of Phloretin. In vitro, H9c2 cells were subjected to hypoxic conditions to simulate an MI model, with Phloretin for 24 h. Cardiac electrophysiological properties were assessed following MI, including the effective refractory period (ERP), action potential duration (APD)90 and ventricular fibrillation (VF) incidence. Echocardiography evaluated left ventricular ejection fraction (LVEF), left ventricular fraction shortening (LVFS), left ventricular internal diameter at end-diastole (LVIDd), left ventricular internal diameter at end-systole (LVIDs), left ventricular end-systolic volume (LVESV) and left ventricular end-diastolic volume (LVEDV) to assess cardiac function. Serum type B natriuretic peptide (BNP) level was applied to evaluate the degree of Heart failure (HF). The fibrosis area and severity were assessed by Masson staining and protein expression levels of collagen 3, collagen 1, TGF-ß and α-SMA. Western blot analysis estimated the protein expression levels of NLRP3, Pro Caspase-1, Caspase-1, ASC, IL-18, IL-1ß, pp38, p38, and Connexin43(Cx43) to elucidate the influence of inflammation on electrical remodeling after MI. RESULTS: Our findings demonstrate that Phloretin inhibits the NLRP3/Caspase-1/IL-1ß pathway, leading to the upregulation of Cx43 by limiting p38 phosphorylation, which further decreases susceptibility to ventricular arrhythmias (VAs). Additionally, Phloretin attenuated fibrosis by inhibiting inflammation to prevent HF. In vitro experiments also provided strong evidence supporting the inhibitory effects of Phloretin on the NLRP3/Caspase-1/IL-1ß pathway. CONCLUSION: Our results suggest that Phloretin could suppress the NLRP3/Caspase-1/IL-1ß pathway to reverse structural and electrical remodeling after MI to prevent the occurrence of VAs and HF.


Asunto(s)
Remodelación Atrial , Insuficiencia Cardíaca , Infarto del Miocardio , Ratas , Animales , Proteína con Dominio Pirina 3 de la Familia NLR , Conexina 43 , Caspasa 1 , Volumen Sistólico , Función Ventricular Izquierda , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/complicaciones , Insuficiencia Cardíaca/etiología , Arritmias Cardíacas/complicaciones , Inflamación/complicaciones , Fibrosis , Remodelación Ventricular
5.
ACS Appl Mater Interfaces ; 15(25): 30372-30382, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37318842

RESUMEN

The practical applications of MgH2 as a high-density hydrogen carrier depend heavily on efficient and low-cost catalysts to accelerate the dehydriding/hydriding reactions at moderate temperatures. In the present work, this issue is addressed by synthesizing Nb-doped TiO2 solid-solution-type catalysts that dramatically improve the hydrogen sorption performances of MgH2. The catalyzed MgH2 can absorb 5 wt % of H2 even at room temperature for 20 s, release 6 wt % of H2 at 225 °C within 12 min, and the complete dehydrogenation can be achieved at 150 °C under a dynamic vacuum atmosphere. Density functional theory calculations reveal that Nb doping introduces Nb 4d orbitals with stronger interaction with H 1s into the density of states of TiO2. This considerably enhances both the adsorption and dissociation ability of the H2 molecule on the catalysts surface and the hydrogen diffusion across the specific Mg/Ti(Nb)O2 interface. The successful implementation of solid solution-type catalysts in MgH2 offers a demonstration and inspiration for the development of high-performance catalysts and solid-state hydrogen storage materials.

6.
Prev Med ; 173: 107576, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37329988

RESUMEN

Type 2 diabetes mellitus (T2DM) is a complex disease caused by multiple factors, which are often accompanied by the disorder of glucose and lipid metabolism and the lack of vitamin D.Over the years, researchers have conducted numerous studies into the pathogenesis and prevention strategies of diabetes. In this study, diabetic SD rats were randomly divided into type 2 diabetes group, vitamin D intervention group, 7-dehydrocholesterole reductase (DHCR7) inhibitor intervention group, simvastatin intervention group, and naive control group. Before and 12 weeks after intervention, liver tissue was extracted to isolate hepatocytes. Compared with naive control group, in the type 2 diabetic group without interference, the expression of DHCR7 increased, the level of 25(OH)D3 decreased, the level of cholesterol increased. In the primary cultured naive and type 2 diabetic hepatocytes, the expression of genes related to lipid metabolism and vitamin D metabolism were differently regulated in each of the 5 treatment groups. Overall, DHCR7 is an indicator for type 2 diabetic glycolipid metabolism disorder and vitamin D deficiency. Targeting DHCR7 will help with T2DM therapy.The management model of comprehensive health intervention can timely discover the disease problems of diabetes patients and high-risk groups and reduce the incidence of diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hipercolesterolemia , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Deficiencia de Vitamina D , Animales , Ratas , Diabetes Mellitus Tipo 2/prevención & control , Oxidorreductasas , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Ratas Sprague-Dawley , Vitamina D/uso terapéutico
7.
ACS Appl Mater Interfaces ; 15(17): 20917-20924, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37096938

RESUMEN

Silicon has emerged as a competitive candidate for hydrolytic hydrogen production due to its high theoretical hydrogen yield, low cost, and on-demand availability. However, the hydrolysis reaction is extremely restrained by passivated SiO2, including the original one on the Si surface and the generated one during hydrolysis, and almost no hydrogen is produced in pure water. Herein, the original SiO2 surface has been effectively removed by milling micro-Si mixed with a small amount of Li metal and NaCl. An artificial soluble interface on Si has been established containing Li2SiO3, Li, and NaCl. Once micro-Si is placed into water, fresh Si surface can be exposed and a weak LiOH solution can be generated due to the fast dissolution of the interface layer, resulting in the rapid liberation of hydrogen gas. Accordingly, the modified micro-Si displays a significantly enhanced hydrogen production in pure water at 30 °C (1213 mL g-1 H2 within 3.0 h), which is 2.0 and 4.7 times higher than that observed for ball-milled Si and raw Si in 0.06 M LiOH solution, respectively. In addition, it also exhibited an outstanding operation compatibility for practical uses. This work has proposed a green, effective, and scalable strategy to promote hydrogen production from the hydrolysis of Si-based systems.

8.
Small ; 19(33): e2301444, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37086140

RESUMEN

Due to the scarce of lithium resources, potassium-ion batteries (PIBs) have attracted extensive attention due to their similar electrochemical properties to lithium-ion batteries (LIBs) and more abundant potassium resources. Even though there is considerable progress in SbBi alloy anode for LIBs and PIBs, most studies are focused on the morphology/structure tuning, while the inherent physical features of alloy composition's effect on the electrochemical performance are rarely investigated. Herein, combined the nanonization, carbon compounding, and alloying with composition regulation, the anode of nitrogen-doped carbon-coated Sbx Bi1-x (Sbx Bi1-x @NC) with a series of tuned chemical compositions is designed as an ideal model. The density functional theory (DFT) calculation and experimental investigation results show that the K+ diffusion barrier is lower and the path is easier to carry out when element Bi dominates the potassiation reaction, which is also the reason for better circulation. The optimized Sb0.25 Bi0.75 @NC shows an excellent cycling performance with a reversible specific capacity of 301.9 mA h g-1 after 500 cycles at 0.1 A g-1 . Meanwhile, the charge-discharge mechanism is intuitively invetigated and analyzed by in situ X-ray diffraction (XRD) and transmission electron microscopy (TEM) in detail. Such an alloy-type anode synthesis approach and in situ observation method provide an adjustable strategy for the designing and investigating of PIB anodes.

9.
ACS Omega ; 7(50): 47108-47119, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36570305

RESUMEN

Infection caused by orthopedic titanium implants, which results in tissue damage, is a key factor in endosseous implant failure. Given the seriousness of implant infections and the limitations of antibiotic therapy, surface microstructures and antimicrobial silver coatings have emerged as prominent research areas and have displayed certain antimicrobial effects. Researchers are now working to combine the two to produce more effective antimicrobial surfaces. However, building robust and homogeneous coatings on complex microstructured surfaces is a tough task due to the limits of surface modification techniques. In this study, a novel flexible electrode brush (silver brush) instead of a traditional hard electrode was designed with electrical discharge machining, which has the ability to adapt to complex groove interiors. The results showed that the use of flexible electrode brush allowed silver to be deposited uniformly in titanium alloy microgrooves. On the surface of Ag-TC4, a uniformly covered deposit was visible, and it slowly released silver ions into a liquid environment. In vitro bacterial assays showed that a Ag-TC4 microstructured surface reduced bacterial adhesion and bacterial biofilm formation, and the antibacterial activity of Ag-TC4 against Staphylococcus aureus and Escherichia coli was 99.68% ± 0.002 and 99.50% ± 0.007, respectively. This research could lay the groundwork for the study of antimicrobial metal bound to microstructured surfaces and pave the way for future implant surface design.

10.
Langmuir ; 38(32): 9853-9862, 2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-35938418

RESUMEN

Superhydrophobic surfaces are extremely susceptible to damage, which can lead to a sharp decrease in their service life and physical properties. Therefore, developing methods to impart superhydrophobic surfaces with excellent wear resistance is crucial. In this article, a flexible carbon fiber brush was utilized as an electrode to fabricate micro-/nano-structures on a grooved surface via electric discharge machining in one step, resulting in a superhydrophobic coating with excellent wear resistance. Carbon fiber brushes exhibit several notable properties, including excellent flexibility, conductivity, and high temperature resistance. Carbon fiber brushes can adapt to the complex inner walls of grooves. Many nano-structures were fabricated on the grooves via pulse discharge, which resulted in a superhydrophobic surface with excellent wear resistance. The contact angle (CA) and sliding angle of the surface after discharge were 156.3 and 2°, respectively. The processed surface exhibits superior corrosion resistance compared to the stainless-steel substrate. The influence of the micro-groove shapes on wear resistance was tested. The results showed that, after 500 cm of wear, the shallow grooves retained their superhydrophobicity with a CA of 150.1°.

11.
Gels ; 8(8)2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35892720

RESUMEN

Passive smoking is extensively studied because of its harmfulness to human health. In this study, the effects of fermented green tea waste extract gels (GTEG) on oxidative damage in mice exposed to short-term cigarette smoke (CS) were investigated. The GTEG is prepared from green tea waste extract and microbial transglutaminase (MTGase). The lung injury model of mice was established through passive smoking for 5 days. The experimental results revealed the following findings. (1) The GTEG induced by MTGase has obvious gel properties; (2) GTEG has strong biological activity and antioxidant properties in vitro; (3) The passive smoking model was established successfully; specifically, the lung tissue of the model mice exhibited inflammatory symptoms, oxidative stress response appeared in their bodies, and their inflammatory indicators increased; (4) Compared with the passive smoking model group, the mice, which were exposed to CS and received GTEG treatment, exhibited increased food intake and body weight; increased total superoxide dismutase and glutathione peroxidase activity in serum; significant decreases (p < 0.05) in the content levels of the inflammatory factors malondialdehyde, interleukin (IL)-6, and tumor necrosis factor α (TNF-α); and inhibited expression of IL-6, IL-33, TNF-α, and IL-1ß inflammatory genes. The results indicated that taking GTEG can relieve the oxidative stress injury of mice caused by short-term CS and has antioxidant properties.

12.
Exp Ther Med ; 23(4): 310, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35350102

RESUMEN

Evidence suggests that macrophage pyroptosis promotes the progression of diabetic atherosclerosis. Spermine, a natural cellular metabolite, demonstrates a protective effect against cardiovascular diseases. However, whether spermine has a protective effect against macrophage pyroptosis caused by high glucose (HG) and oxidized low-density lipoprotein (ox-LDL) conditions remains to be elucidated. To investigate the protective effect of spermine and the related underlying mechanism, THP-1 macrophages were treated with HG/ox-LDL, spermine, or the specific nuclear factor erythroid 2-related factor 2 (Nrf2) inhibitor ML385. Cell viability was detected using CCK-8, cell membrane permeability was analyzed using lactate dehydrogenase (LDH) and Hoechst/propidium iodide staining and pyroptosis-related gene and protein expression levels were evaluated using polymerase chain reaction and western blot analysis. Spermine showed a potent preventive effect on THP-1 macrophage pyroptosis and oxidative stress induced by HG/ox-LDL. Cells treated with spermine showed increased cell viability, reduced reactive oxygen species (ROS) production, decreased LDH levels in the supernatant and reduced cell swelling. In addition, spermine significantly reduced NLR family pyrin domain containing 3, cleaved caspase-1, N-gasdermin D and IL-1ß expression, as well as IL-1ß levels in the supernatant. This demonstrated that the inhibition of pyroptosis and oxidative stress due to spermine was Nrf2 dependent. Furthermore, spermine enhanced Nrf2 nuclear translocation, thereby increasing heme oxygenase-1 and NADPH quinone oxidoreductase-1 expression, which subsequently reduced ROS production. In addition, the anti-pyroptotic and antioxidant effects of spermine were reversed by ML385 inhibition of Nrf2. It was concluded that spermine prevented macrophage pyroptosis and increased ROS overproduction by activating the Nrf2 pathway. The data suggested that spermine may be a potential novel drug for the treatment of diabetic atherosclerosis because it targets macrophage pyroptosis.

13.
J Phys Chem Lett ; 12(30): 7076-7084, 2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34292751

RESUMEN

Because they are safer and less costly than state-of-the-art Li-ion batteries, aqueous zinc-ion batteries (AZIBs) have been attracting more attention in stationary energy storage and industrial energy storage. However, the electrochemical reaction of H+ in all of the cathode materials of AZIBs has been puzzling until now. Herein, highly oriented VO2 monocrystals grown on a Ti current collector (VO2-Ti) were rationally designed as the research model, and such a well-aligned VO2 cathode also displayed excellent zinc-ion storage capability (e.g., a reversible capacity of 148.4 mAh/g at a current density of 2 A/g). To visualize the H+ reaction process, we used time-of-flight secondary-ion mass spectrometry. With the benefit of such a binder-free and conductor-free electrode design, a clear and intuitive reaction of H+ in a VO2 cathode is obtained, which is quite significant for unraveling the accurate reaction mechanism of VO2 in AZIBs.

14.
Materials (Basel) ; 14(10)2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-34067643

RESUMEN

Hydrogen embrittlement causes deterioration of materials used in metal-hydrogen systems. Alloying is a good option for overcoming this issue. In the present work, first-principles calculations were performed to systematically study the effects of adding Ni on the stability, dissolution, trapping, and diffusion behaviour of interstitial/vacancy H atoms of pure V. The results of lattice dynamics and solution energy analyses showed that the V-Ni solid solutions are dynamically and thermodynamically stable, and adding Ni to pure V can reduce the structural stability of various VHx phases and enhance their resistance to H embrittlement. H atoms preferentially occupy the characteristic tetrahedral interstitial site (TIS) and the octahedral interstitial site (OIS), which are composed by different metal atoms, and rapidly diffuse along both the energetically favourable TIS → TIS and OIS → OIS paths. The trapping energy of monovacancy H atoms revealed that Ni addition could help minimise the H trapping ability of the vacancies and suppress the retention of H in V. Monovacancy defects block the diffusion of H atoms more than the interstitials, as determined from the calculated H-diffusion barrier energy data, whereas Ni doping contributes negligibly toward improving the H-diffusion coefficient.

15.
Langmuir ; 37(23): 7043-7054, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34080884

RESUMEN

Frequent leakage and pollution of oily wastewater seriously affect the world's ecosystem safety and economic development, which prompts us to urgently develop a highly effective, low-cost, wear-resistant, chemically stable, and environmentally friendly new functional material for oil/water separation. In this paper, a robust superhydrophobic material was successfully electrodeposited on the porous copper foam substrates in myristic acid (CH3(CH2)12COOH) and lanthanum chloride (LaCl3·6H2O) electrodeposition solution under a continuous pumping circulation and rotation condition. Moreover, SEM, EDS, XRD, FTIR, and XPS technologies were utilized to characterize the surface morphology and chemical composition information. The superhydrophobic property was evaluated by optical contact angle instrument and high-speed camera. It turned out that the micro/nanostructures were mainly composed of lanthanum myristate, and static CA of superhydrophobic copper foam (SCF) was up to 165.2° with SA ≈ 2°. Besides, the SCF exhibited a better performance with good anticorrosion, excellent chemical stability, and outstanding mechanical stability. Furthermore, the SCF can achieve up to 98.6% oil/water separation efficiency. More importantly, by employing this novel processing method, it can effectively save time and provide a promising potential way to make denser and thicker foams for continuous oil/water separation and may be easily applied to other conductive metal matrix materials.

16.
Chemistry ; 27(35): 9087-9093, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-33876844

RESUMEN

A significant obstacle in the large-scale applications of sodium borohydride (NaBH4 ) for hydrogen storage is its high cost. Herein, we report a new method to synthesize NaBH4 by ball milling hydrated sodium tetraborate (Na2 B4 O7 ⋅ 10H2 O) with low-cost Al or Al88 Si12 , instead of Na, Mg or Ca. An effective strategy is developed to facilitate mass transfer during the reaction by introducing NaH to enable the formation of NaAlO2 instead of dense Al2 O3 on Al surface, and by using Si as a milling additive to prevent agglomeration and also break up passivation layers. Another advantage of this process is that hydrogen in Na2 B4 O7 ⋅ 10H2 O serves as a hydrogen source for NaBH4 generation. Considering the low cost of the starting materials and simplicity in operation, our studies demonstrate the potential of producing NaBH4 in a more economical way than the commercial process.

17.
Materials (Basel) ; 14(2)2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33430514

RESUMEN

Rare-earth-based AB2-type compounds with Laves phase structure are readily subject to hydrogen-induced amorphization and disproportionation upon hydrogenation. In this work, we conducted the Sc alloying on Y0.95Ni2 to improve its hydrogen storage properties. The results show that the amorphization degree of Y0.95Ni2 deepens with the increasing hydrogenation time, pressure, and temperature. The Y(Sc)0.95Ni2 ternary compounds show a significant improvement in reversibility and dehydriding thermodynamics due to the reduced atomic radius ratio RA/RB and cell volume. Hydrogen-induced amorphization is fully eliminated in the Y0.25Sc0.7Ni2. The Y0.25Sc0.7Ni2 delivers a reversible hydrogen storage capacity of 0.94 wt.% and the dissociation pressure of 0.095 MPa at the minimum dehydrogenation temperature of 100 °C.

18.
Adv Mater ; 33(11): e2004711, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33511690

RESUMEN

To achieve high ionic conductivity for solid electrolyte, an artificial Li-rich interface layer of about 60 nm thick has been constructed in polymer-based poly(ethylene oxide)-lithium bis(trifluoromethanesulfonyl)imide composite solid electrolyte (briefly noted as PEOm ) by adding Li-based alloys. As revealed by high-resolution transmission electron microscopy and electron energy loss spectroscopy, an artificial interface layer of amorphous feature is created around the Li-based alloy particles with the gradient distribution of Li across it. Electrochemical analysis and theoretical modeling demonstrate that the interface layer provides fast ion transport path and plays a key role in achieving high and stable ionic conductivity for PEOm -Li21 Si5 composite solid electrolyte. The PEOm -5%Li21 Si5 composite electrolyte exhibits an ionic conductivity of 3.9 × 10-5  S cm-1 at 30 °C and 5.6 × 10-4  S cm-1 at 45 °C. The LiFePO4 | PEOm -5%Li21 Si5 | Li all-solid-state batteries could maintain a stable capacity of 129.2 mA h g-1 at 0.2 C and 30 °C after 100 cycles, and 111.3 mA h g-1 after 200 cycles at 0.5 C and 45 °C, demonstrating excellent cycling stability and high-rate capability.

19.
Micromachines (Basel) ; 12(1)2020 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-33375306

RESUMEN

Micro-electrical discharge machining (micro-EDM) is a good candidate for processing micro-hole arrays, which are critical features of micro-electro-mechanical systems (MEMS), diesel injector nozzles, inkjet printheads and turbine blades, etc. In this study, the wire vibration of the wire electro-discharge grinding (WEDG) system has been analyzed theoretically, and, accordingly, an improved WEDG method was developed to fabricate micron-scale diameter and high-aspect-ratio microelectrodes for the in-process micro-EDM of hole array with hole diameter smaller than 20 µm. The improved method has a new feature of a positioning device to address the wire vibration problem, and thus to enhance microelectrodes fabrication precision. Using this method, 14 µm diameter microelectrodes with less than 0.4 µm deviation and an aspect ratio of 142, which is the largest aspect ratio ever reported in the literature, were successfully fabricated. These microelectrodes were then used to in-process micro-EDM of hole array in stainless steel. The effects of applied voltage, current and pulse frequency on hole dimensional accuracy and microelectrode wear were investigated. The optimal processing parameters were selected using response-surface experiments. To improve machining accuracy, an in-process touch-measurement compensation strategy was applied to reduce the cumulative compensation error of the micro-EDM process. Using such a system, micro-hole array (2 × 80) with average entrance diameter 18.91 µm and average exit diameter 17.65 µm were produced in 50 µm thickness stainless steel sheets, and standard deviations of hole entrance and exit sides of 0.44 and 0.38 µm, respectively, were achieved.

20.
J Cancer Res Ther ; 16(5): 1151-1156, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33004763

RESUMEN

CONTEXT: Percutaneous image-guided thermal ablation has emerged as a valuable therapeutic approach for hepatic malignancies. Magnetic resonance imaging (MRI) has shown potential for great soft-tissue resolution and multiplanar capabilities in arbitrary imaging planes, which are also critical for treatment planning, targeting, and evaluation. AIMS: The aim of this study was to investigate the feasibility, technical success, safety, and follow-up of hepatic malignancies treated with MRI-guided microwave ablation (MWA). MATERIALS AND METHODS: MRI-guided MWA was performed in a closed-bore 1.5 T MR system. T1-weighted imaging was used as a monitoring tool during surgery. T2-weighted imaging was performed to obtain an adequate tumor margin, to calculate the tumor size. Multi-b-value diffusion-weighted imaging (DWI) was performed postprocedurally. Enhanced MRI was performed at 4 weeks, to assess the technical success, and every 3-6 months as a follow-up. RESULTS: Twenty-six patients (38 lesions) were enrolled in the study. A primary efficacy rate of 100% was achieved, and no major complications were observed. Two patient cohorts were identified based on lesion size. Six lesions with incomplete circles on reconstructed DWI appeared immediately postprocedure, and persistent hyperintense signals developed into new lesions over the subsequent 6-12 months. CONCLUSION: MRI-guided ablation is feasible and effective for planning and evaluating MWA in hepatic malignancies. The available clinical data strongly support the advantages of the assessment of tumors through 3D imaging versus routine axial images.


Asunto(s)
Imagen de Difusión por Resonancia Magnética/métodos , Neoplasias Hepáticas/cirugía , Microondas/uso terapéutico , Ablación por Radiofrecuencia/métodos , Cirugía Asistida por Computador/métodos , Estudios de Factibilidad , Femenino , Estudios de Seguimiento , Humanos , Neoplasias Hepáticas/patología , Masculino , Persona de Mediana Edad , Seguridad del Paciente , Estudios Retrospectivos , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...