Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 8.381
1.
Article En | MEDLINE | ID: mdl-38722507

To assess the impact of low-dose contrast media (CM) injection protocol with deep learning image reconstruction (DLIR) algorithm on image quality in coronary CT angiography (CCTA). In this prospective study, patients underwent CCTA were prospectively and randomly assigned to three groups with different contrast volume protocols (at 320mgI/mL concentration and constant flow rate of 5ml/s). After pairing basic information, 210 patients were enrolled in this study: Group A, 0.7mL/kg (n = 70); Group B, 0.6mL/kg (n = 70); Group C, 0.5mL/kg (n = 70). All patients were examined via a prospective ECG-triggered scan protocol within one heartbeat. A high level DLIR (DLIR-H) algorithm was used for image reconstruction with a thickness and interval of 0.625mm. The CT values of ascending aorta (AA), descending aorta (DA), three main coronary arteries, pulmonary artery (PA), and superior vena cava (SVC) were measured and analyzed for objective assessment. Two radiologists assessed the image quality and diagnostic confidence using a 5-point Likert scale. The CM doses were 46.81 ± 6.41mL, 41.96 ± 7.51mL and 34.65 ± 5.38mL for Group A, B and C, respectively. The objective assessments on AA, DA and the three main coronary arteries and the overall subjective scoring showed no significant difference among the three groups (all p > 0.05). The subjective assessment proved that excellent CCTA images can be obtained from the three different contrast media protocols. There were no significant differences in intracoronary attenuation values between the higher HR subgroup and the lower HR subgroup among three groups. CCTA reconstructed with DLIR could be realized with adequate enhancement in coronary arteries, excellent image quality and diagnostic confidence at low contrast dose of a 0.5mL/kg. The use of lower tube voltages may further reduce the contrast dose requirement.

3.
J Hazard Mater ; 472: 134551, 2024 May 09.
Article En | MEDLINE | ID: mdl-38743979

Most hyperaccumulators cannot maintain vigorous growth throughout the year, which may result in a low phytoextraction efficiency for a few months. In the present study, rotation of two hyperaccumulators is proposed to address this issue. An 18-month field experiment was conducted to evaluate the phytoextraction efficiency of Cd by the monoculture and rotation of Celosia argentea and Sedum plumbizincicola. The results showed that rotation increased amount of extracted Cd increased by 2.3 and 1.6 times compared with monoculture of C. argentea and S. plumbizincicola. In rotation system, the biomass of S. plumbizincicola and Cd accumulation in C. argentea increased by 54.4% and 40.7%, respectively. Rotation reduced fallow time and increased harvesting frequency, thereby enhancing Cd phytoextraction. Planting C. argentea significantly decreased soil pathogenic microbes and increased the abundances of plant growth-promoting rhizobacteria (PGPR) and 1-aminocyclopropane-1-carboxylate (ACC) deaminase genes, which may be beneficial for the growth of S. plumbizincicola. Planting S. plumbizincicola increased the abundance of sulfur oxidization (SOX) system genes and decreased soil pH (p < 0.05), thereby increasing the Cd uptake by C. argentea. These findings indicated that rotation of C. argentea and S. plumbizincicola is a promising method for promoting Cd phytoextraction.

4.
Materials (Basel) ; 17(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38730893

Metakaolin-based geopolymers have substantial potential as replacements for cement, but their relatively inferior mechanical properties restrict their application. This paper aims to enhance the mechanical properties of metakaolin-based geopolymers by incorporating appropriate amounts of calcium sources. CaCO3, Ca(OH)2, and CaSO4 are three types of calcium sources commonly found in nature and are widely present in various industrial wastes. Thus, the effects of these three calcium sources on the performance of metakaolin-based geopolymers were studied. Through the analysis of the mechanical properties, heat-release behavior during hydration, hydration products, and microstructure of geopolymers, the effectiveness of the aforementioned calcium sources in improving the performance of metakaolin-based geopolymer was evaluated, and the mechanisms of action were elucidated. The results indicate that the pozzolanic reaction between CH and MK could promote MK hydration and increase the proportion of CASH gel in the hydration products, thereby facilitating the setting of the geopolymer and enhancing its strength. CS could react with the active aluminates in MK to form ettringite, thus forming a higher early strength. CC had a lower reactivity with MK and does not improve the performance of MK-based geopolymers.

5.
Molecules ; 29(9)2024 May 04.
Article En | MEDLINE | ID: mdl-38731625

Upon a variety of environmental stresses, eukaryotic cells usually recruit translational stalled mRNAs and RNA-binding proteins to form cytoplasmic condensates known as stress granules (SGs), which minimize stress-induced damage and promote stress adaptation and cell survival. SGs are hijacked by cancer cells to promote cell survival and are consequently involved in the development of anticancer drug resistance. However, the design and application of chemical compounds targeting SGs to improve anticancer drug efficacy have rarely been studied. Here, we developed two types of SG inhibitory peptides (SIPs) derived from SG core proteins Caprin1 and USP10 and fused with cell-penetrating peptides to generate TAT-SIP-C1/2 and SIP-U1-Antp, respectively. We obtained 11 SG-inducing anticancer compounds from cell-based screens and explored the potential application of SIPs in overcoming resistance to the SG-inducing anticancer drug sorafenib. We found that SIPs increased the sensitivity of HeLa cells to sorafenib via the disruption of SGs. Therefore, anticancer drugs which are competent to induce SGs could be combined with SIPs to sensitize cancer cells, which might provide a novel therapeutic strategy to alleviate anticancer drug resistance.


Antineoplastic Agents , Sorafenib , Stress Granules , Humans , Sorafenib/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Stress Granules/metabolism , HeLa Cells , Drug Resistance, Neoplasm/drug effects , Peptides/pharmacology , Peptides/chemistry , Cell Survival/drug effects , Ubiquitin Thiolesterase/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Cell Line, Tumor , Cell-Penetrating Peptides/pharmacology , Cell-Penetrating Peptides/chemistry
6.
Plants (Basel) ; 13(9)2024 Apr 28.
Article En | MEDLINE | ID: mdl-38732437

Microbial-driven N turnover is important in regulating N fertilizer use efficiency through the secretion of metabolites like glycolipids. Currently, our understanding of the potential of glycolipids to partially reduce N fertilizer use and the effects of glycolipids on crop yield and N use efficiency is still limited. Here, a three-year in situ field experiment was conducted with seven treatments: no fertilization (CK); chemical N, phosphorus and potassium (NPK); NPK plus glycolipids (N+PKT); and PK plus glycolipids with 10% (0.9 N+PKT), 20% (0.8 N+PKT), 30% (0.7 N+PKT), and 100% (PKT) N reduction. Compared with NPK, glycolipids with 0-20% N reduction did not significantly reduce maize yields, and also increased N uptake by 6.26-11.07%, but no significant changes in grain or straw N uptake. The N resorption efficiency under 0.9 N+PKT was significantly greater than that under NPK, while the apparent utilization rates of N fertilizer and partial factor productivity of N under 0.9 N+PKT were significantly greater than those under NPK. Although 0.9 N+PKT led to additional labor and input costs, compared with NPK, it had a greater net economic benefit. Our study demonstrates the potential for using glycolipids in agroecosystem management and provides theoretical support for optimizing fertilization strategies.

7.
Int J Biol Macromol ; 270(Pt 1): 132026, 2024 May 03.
Article En | MEDLINE | ID: mdl-38704074

Multiple phenolic substances have been shown to promote SIRT3 expression, however, few studies have focused on the effects of these phenolics on SIRT3 enzyme activity. This study constructed a variety of reaction systems to elucidate the mechanisms by which different polyphenols affect SIRT3 enzyme activity. The results showed that acP53317-320 was the most suitable substrate among the five acetylated peptide substrates (Kcat/Km = 74.85 ± 1.86 M-1•s-1). All the phenolic compounds involved in the experiment inhibited the enzymatic activity of SIRT3, and the lowest IC50 among them was quercetin (0.12 ± 0.01 mM) and the highest was piceatannol (1.29 ± 0.08 mM). Their inhibition types were mainly competitive and mixed. In addition, piceatannol was found to be a natural SIRT3 agonist by enzyme kinetic analysis and validation of deacetylation efficiency. This study will provide a useful reference for polyphenol modulation of SIRT3 dosage, as well as the development and application of polyphenol-based SIRT3 activators and agonists.

8.
Sci Total Environ ; 930: 172895, 2024 Jun 20.
Article En | MEDLINE | ID: mdl-38697545

The widespread presence of fluoride in water, food, and the environment continues to exacerbate the impact of fluoride on the male reproductive health. However, as a critical component of the male reproductive system, the intrinsic mechanism of fluoride-induced cauda epididymis damage and the role of miRNAs in this process are still unclear. This study established a mouse fluorosis model and employed miRNA and mRNA sequencing; Evans blue staining, Oil Red O staining, TEM, immunofluorescence, western blotting, and other technologies to investigate the mechanism of miRNA in fluoride-induced cauda epididymal damage. The results showed that fluoride exposure increased the fluoride concentration in the hard tissue and cauda epididymis, altered the morphology and ultrastructure of the cauda epididymis, and reduced the motility rate, normal morphology rate, and hypo-osmotic swelling index of the sperm in the cauda epididymis. Furthermore, sequencing results revealed that fluoride exposure resulted in differential expression of 17 miRNAs and 4725 mRNAs, which were primarily enriched in the biological processes of tight junctions, inflammatory response, and lipid metabolism, with miR-742-3p, miR-141-5p, miR-878-3p, and miR-143-5p serving as key regulators. Further verification found that fluoride damaged tight junctions, raised oxidative stress, induced an inflammatory response, increased lipid synthesis, and reduced lipid decomposition and transport in the cauda epididymis. This study provided a theoretical basis for developing miRNA as potential diagnostic markers and therapeutic target drugs for this injury.


Epididymis , Fluorides , MicroRNAs , RNA, Messenger , Male , Animals , MicroRNAs/metabolism , Fluorides/toxicity , Mice , Epididymis/drug effects , Epididymis/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics
9.
J Hazard Mater ; 473: 134590, 2024 May 16.
Article En | MEDLINE | ID: mdl-38762990

Phytoremediation, an eco-friendly approach for mitigating heavy metal contamination, is reliant on hyperaccumulators. This study focused on Leersia hexandra Swart, a known chromium (Cr) hyperaccumulator with demonstrated tolerance to multiple heavy metals. Our objective was to investigate its response to simultaneous Cr and nickel (Ni) stress over 12 days. Results from physiological experiments demonstrated a significant increase in the activities of antioxidant enzymes (APX, SOD, CAT) and glutathione (GSH) content under Cr and Ni stress, indicating enhanced antioxidant mechanisms. Transcriptome analysis revealed that stress resulted in the differential expression of 27 genes associated with antioxidant activity and metal binding, including APX, SOD, CAT, GSH, metallothionein (MT), and nicotinamide (NA). Among them, twenty differentially expressed genes (DEGs) related to GSH metabolic cycle were identified. Notably, GSTU6, GND1, and PGD were the top three related genes, showing upregulation with fold changes of 4.57, 6.07, and 3.76, respectively, indicating their crucial role in metal tolerance. The expression of selected DEGs was validated by quantitative real-time PCR, confirming the reliability of RNA-Seq data. Metabolomic analysis revealed changes in 1121 metabolites, with amino acids, flavonoids, and carbohydrates being the most affected. Furthermore, glucosinolate biosynthesis and amino acid biosynthesis pathways were represented in the KEGG pathway of differentially expressed metabolites (DEMs). This study provides insights into the tolerance mechanisms of L. hexandra under the co-stress of Cr and Ni, offering a new perspective for enhancing its remediation performance.

10.
Med Sci Monit ; 30: e943228, 2024 May 20.
Article En | MEDLINE | ID: mdl-38764217

BACKGROUND Thyroid nodule prevalence reaches 65% in the general population. Hence, appropriate ultrasonic examination is key in disease monitoring and management. We investigated the American College of Radiology Thyroid Imaging Reporting and Data System (ACR-TIRADS) score for diagnosis of benign and malignant thyroid nodules and pathological types. MATERIAL AND METHODS A retrospective study was conducted. According to ultrasound images, ultrasonic characteristics of benign and malignant thyroid nodules and different pathological types were analyzed using ACR-TIRADS score, and diagnostic value was determined. AUCs were compared for tumor diagnosis and differentiation. RESULTS Overall, 1675 thyroid nodules from 1614 patients were included. AUC value of papillary thyroid carcinoma (PTC) diagnosed with ACR-TIRADS was highest (0.955 [95% CI=0.946-0.965]), while that of follicular thyroid carcinoma (FTC) was lowest (0.877 [95% CI=0.843-0.912]). FTC had the highest sensitivity (95.1%) and lowest specificity (64.8%). When the cut-off value was 5.5 points, accuracy of diagnosing PTC and anaplastic thyroid carcinoma (ATC) was highest, 80.5% and 78.7% respectively. Comparison of the multi-index prediction model constructed by multivariable logistic regression analysis and prediction model constructed by ACR-TIRADS score showed, when evaluating PTC and ATC, the multi-index model was better: AUCs of PTC were 0.966 vs 0.955, and AUCs of ATC were 0.982 vs 0.952, respectively, (P<0.05). CONCLUSIONS ACR-TIRADS score-based ultrasound examination of thyroid nodules aids diagnosis of benign and malignant thyroid nodules. TIRADS criteria favor diagnosis of PTC (and ATC) over FTC. ACR-TIRADS score can help clinicians diagnose thyroid nodules quickly and earlier, exhibits good clinical value, and can prevent missed diagnoses.


Thyroid Neoplasms , Thyroid Nodule , Ultrasonography , Humans , Thyroid Nodule/diagnostic imaging , Thyroid Nodule/pathology , Thyroid Nodule/diagnosis , Female , Male , Middle Aged , Adult , Ultrasonography/methods , Retrospective Studies , Thyroid Neoplasms/pathology , Thyroid Neoplasms/diagnostic imaging , Thyroid Neoplasms/diagnosis , Diagnosis, Differential , Aged , Thyroid Cancer, Papillary/diagnosis , Thyroid Cancer, Papillary/diagnostic imaging , Thyroid Cancer, Papillary/pathology , Thyroid Gland/pathology , Thyroid Gland/diagnostic imaging , Sensitivity and Specificity , Adenocarcinoma, Follicular/diagnostic imaging , Adenocarcinoma, Follicular/pathology , Adenocarcinoma, Follicular/diagnosis , ROC Curve
11.
bioRxiv ; 2024 May 07.
Article En | MEDLINE | ID: mdl-38766236

Homologous recombination (HR) is a high-fidelity repair mechanism for double-strand breaks. Rad51 is the key enzyme that forms filaments on single-stranded DNA (ssDNA) to catalyze homology search and DNA strand exchange in recombinational DNA repair. In this study, we employed single-particle cryo-electron microscopy (cryo-EM) to ascertain the density map of the budding yeast Rad51-ssDNA filament bound to ADP-AlF 3 , achieving a resolution of 2.35 Å without imposing helical symmetry. The model assigned 6 Rad51 protomers, 24 nt of DNA, and 6 bound ADP-AlF 3 . It shows 6-fold symmetry implying monomeric building blocks, unlike the structure of the Rad51-I345T mutant filament with three-fold symmetry implying dimeric building blocks, for which the structural comparisons provide a satisfying mechanistic explanation. This image analysis enables comprehensive comparisons of individual Rad51 protomers within the filament and reveals local conformational movements of amino acid side chains. Notably, Arg293 in Loop1 adopts multiple conformations to facilitate Leu296 and Val331 in separating and twisting the DNA triplets. We also analyzed the predicted structures of yeast Rad51-K342E and two tumor-derived human RAD51 variants, RAD51-Q268P and RAD51-Q272L, using the Rad51-ssDNA structure from this study as a reference.

12.
Insect Mol Biol ; 2024 May 20.
Article En | MEDLINE | ID: mdl-38767730

Bee venom serves as an essential defensive weapon for bees and also finds application as a medicinal drug. MicroRNAs (miRNAs) serve as critical regulators and have been demonstrated to perform a variety of biological functions. However, the presence of miRNAs in bee venom needs to be confirmed. Therefore, we conducted small RNA sequencing and identified 158 known miRNAs, 15 conserved miRNAs and 4 novel miRNAs. It is noteworthy that ame-miR-1-3p, the most abundant among them, accounted for over a quarter of all miRNA reads. To validate the function of ame-miR-1-3p, we screened 28 candidate target genes using transcriptome sequencing and three target gene prediction software (miRanda, PITA and TargetScan) for ame-miR-1-3p. Subsequently, we employed real-time quantitative reverse transcription PCR (qRT-PCR), Western blot and other technologies to confirm that ame-miR-1-3p inhibits the relative expression of antizyme inhibitor 1 (AZIN1) by targeting the 3' untranslated region (UTR) of AZIN1. This, in turn, caused ODC antizyme 1 (OAZ1) to bind to ornithine decarboxylase 1 (ODC1) and mark ODC1 for proteolytic destruction. The reduction in functional ODC1 ultimately resulted in a decrease in polyamine biosynthesis. Furthermore, we determined that ame-miR-1-3p accelerates cell death through the AZIN1/OAZ1-ODC1-polyamines pathway. Our studies demonstrate that ame-miR-1-3p diminishes cell viability and it may collaborate with sPLA2 to enhance the defence capabilities of honeybees (Apis mellifera L.). Collectively, these data further elucidate the defence mechanism of bee venom and expand the potential applications of bee venom in medical treatment.

13.
BMC Pulm Med ; 24(1): 248, 2024 May 19.
Article En | MEDLINE | ID: mdl-38764064

BACKGROUND: Neuronal guanine nucleotide exchange factor (NGEF) plays a key role in several cancers; however, its role in lung adenocarcinoma (LUAD) remains unclear. The aim of this study was to evaluate the efficacy of NGEF as a prognostic biomarker and potential therapeutic target for LUAD. METHODS: NGEF expression data for multiple cancers and LUAD were downloaded from multiple databases. The high- and low-NGEF expression groups were constructed based on median NGEF expression in LUAD samples, and then performed Kaplan-Meier survival analysis. Differentially expressed genes (DEGs) from the two NGEF expression groups were screened and applied to construct a protein-protein interaction network. The primary pathways were obtained using gene set enrichment analysis. The associations between NGEF expression and clinical characteristics, immune infiltration, immune checkpoint inhibitors (ICIs), sensitivity to chemotherapy, and tumor mutation burden (TMB) were investigated using R. Levels of NGEF expression in the lung tissue was validated using single-cell RNA sequencing, quantitative polymerase chain reaction (qPCR), immunohistochemical staining, and western blot analysis. RESULTS: The expression of NGEF mRNA was upregulated in multiple cancers. mRNA and protein expression levels of NGEF were higher in patients with LUAD than in controls, as validated using qPCR and western blot. High NGEF expression was an independent prognostic factor for LUAD and was associated with advanced tumor stage, large tumor size, more lymph node metastasis, and worse overall survival (OS). A total of 182 overlapping DEGs were screened between The Cancer Genome Atlas and GSE31210, among which the top 20 hub genes were identified. NGEF expression was mainly enriched in the pathways of apoptosis, cell cycle, and DNA replication. Moreover, elevated NGEF expression were associated with a high fraction of activated memory CD4+ T cells and M0 macrophages; elevated expression levels of the ICIs: programmed cell death 1 and programmed cell death 1 ligand 1 expression; higher TMB; and better sensitivity to bortezomib, docetaxel, paclitaxel, and parthenolide, but less sensitivity to axitinib and metformin. CONCLUSION: NGEF expression is upregulated in LUAD and is significantly associated with tumor stages, OS probability, immune infiltration, immunotherapy response, and chemotherapy response. NGEF may be a potential diagnostic and prognostic biomarker and therapeutic target in LUAD.


Adenocarcinoma of Lung , Biomarkers, Tumor , Guanine Nucleotide Exchange Factors , Immunotherapy , Lung Neoplasms , Humans , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Prognosis , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Immunotherapy/methods , Male , Female , Middle Aged , Kaplan-Meier Estimate , Gene Expression Regulation, Neoplastic , Immune Checkpoint Inhibitors/therapeutic use , Aged , Protein Interaction Maps
14.
Cancer Control ; 31: 10732748241255548, 2024.
Article En | MEDLINE | ID: mdl-38764160

Background: Ovarian cancer stands as the deadliest malignant tumor within the female reproductive tract. As a result of the absence of effective diagnostic and monitoring markers, 75% of ovarian cancer cases are diagnosed at a late stage, leading to a mere 50% survival rate within five years. The advancement of molecular biology is essential for accurate diagnosis and treatment of ovarian cancer. Methods: A review of several randomized clinical trials, focusing on the ovarian cancer, was undertaken. The advancement of molecular biology and diagnostic methods related to accurate diagnosis and treatment of ovarian cancer were examined. Results: Liquid biopsy is an innovative method of detecting malignant tumors that has gained increasing attention over the past few years. Cell-free DNA assay-based liquid biopsies show potential in delineating tumor status heterogeneity and tracking tumor recurrence. DNA methylation influences a multitude of biological functions and diseases, especially during the initial phases of cancer. The cell-free DNA methylation profiling system has emerged as a sensitive and non-invasive technique for identifying and detecting the biological origins of cancer. It holds promise as a biomarker, enabling early screening, recurrence monitoring, and prognostic evaluation of cancer. Conclusions: This review evaluates recent advancements and challenges associated with cell-free DNA methylation analysis for the diagnosis, prognosis monitoring, and assessment of therapeutic responses in the management of ovarian cancers, aiming to offer guidance for precise diagnosis and treatment of this disease.


Ovarian cancer stands as the deadliest malignant tumor within the female reproductive tract. As a result of the absence of effective diagnostic and monitoring markers, 75% of ovarian cancer cases are diagnosed at a late stage, leading to a mere 50% survival rate within five years. Nearly 80% of advanced stages have a poor prognosis or recurrence within five years. Ovarian cancer is linked to a grim long-term prognosis attributable to its elevated mortality and recurrence rates. The advancement of molecular biology and diagnostic methods is essential for accurate diagnosis and treatment of ovarian cancer. Liquid biopsy is an innovative method of detecting malignant tumors that has gained increasing attention over the past few years. Cell-free DNA assay-based liquid biopsies show potential in delineating tumor status heterogeneity and tracking tumor recurrence. DNA methylation represents a prevalent epigenetic modification. DNA methylation influences a multitude of biological functions and diseases, especially during the initial phases of cancer. The cell-free DNA methylation profiling system has emerged as a sensitive and non-invasive technique for identifying and detecting the biological origins of cancer. This review assesses recent progress and obstacles linked to cell-free DNA methylation analysis for diagnosing, prognostic monitoring, and evaluating therapeutic responses in managing ovarian cancers.


Biomarkers, Tumor , DNA Methylation , Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/genetics , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/pathology , Prognosis , Biomarkers, Tumor/genetics , Cell-Free Nucleic Acids/genetics , Liquid Biopsy/methods
15.
Pharmacol Res ; 204: 107218, 2024 May 18.
Article En | MEDLINE | ID: mdl-38768671

This study investigates the role of Stanniocalcin-1 (STC1) in melanoma progression, with a focus on its impact on metastasis, angiogenesis, and immune evasion. Systematic bioinformatics analysis revealed the potential influence of STC1 dysregulation on prognosis, immune cell infiltration, response to immune therapy, and cellular functions. In vitro assays were conducted to assess the proliferation, invasion, migration, and angiogenesis capabilities of A375 cells. In vivo experiments utilizing C57BL/6 J mice established a lung metastasis model using B16-F10 cells to evaluate macrophage infiltration and M2 polarization. A Transwell co-culture system was employed to explore the crosstalk between melanoma and macrophages. Molecular interactions among STC1, YAP, ßPIX, and CCL2 are investigated using mass spectrometry, Co-Immunoprecipitation, Dual-Luciferase Reporter Assay, and Chromatin Immunoprecipitation experiments. STC1 was found to enhance lung metastasis by promoting the recruitment and polarization of M2 macrophages, thereby fostering an immunosuppressive microenvironment. Mechanistically, STC1 competes with YAP for binding to ßPIX within the KER domain in melanoma cells, leading to YAP activation and subsequent CCL2 upregulation. CCL2-induced M2 macrophages secrete VEGFA, which enhances tumor vascularization and increases STC1 expression via the AKT signaling pathway in melanoma cells, establishing a pro-metastatic feedback loop. Notably, STC1-induced YAP activation increases PD-L1 expression, promoting immune evasion. Silencing STC1 enhances the efficacy of PD-1 immune checkpoint therapy in mice. This research elucidates STC1's role in melanoma metastasis and its complex interactions with tumor-associated macrophages, proposing STC1 as a potential therapeutic target for countering melanoma metastasis and augmenting the efficacy of PD-1 immunotherapy.

16.
Cancer Med ; 13(10): e7227, 2024 May.
Article En | MEDLINE | ID: mdl-38770632

BACKGROUND: To comprehensively elucidate the genomic and mutational features of lung cancer cases, and lung adenocarcinoma (LUAD), it is imperative to conduct ongoing investigations into the genomic landscape. In this study, we aim to analyze the somatic mutation profile and assessed the significance of these informative genes utilizing a retrospective LUAD cohort. METHODS: A total of 247 Chinese samples were analyzed to exhibit the tumor somatic genomic alterations in patients with LUAD. The Cox regression analysis was employed to identify prognosis-related genes and establish a predictive model for stratifying patients with LUAD. RESULTS: In the Dianjiang People's Hospital (DPH) cohort, the top five frequent mutated genes were (Epidermal growth factor receptor) EGFR (68%), TP53 (30%), RBM10 (13%), LRP1B (9%), and KRAS (9%). Of which, EGFR is a mostly altered driver gene, and most mutation sites are located in tyrosine kinase regions. Oncogene pathway alteration and mutation signature analysis demonstrated the RTK-RAS pathway alteration, and smoking was the main carcinogenic factor of the DPH cohort. Furthermore, we identified 34 driver genes in the DPH cohort, including EGFR (68%), TP53 (30.4%), RBM10 (12.6%), KRAS (8.5%), LRP1B (8.5%), and so on, and 45 Clinical Characteristic-Related Genes (CCRGs) were found to closely related to the clinical high-risk factors. We developed a Multiple Parameter Gene Mutation (MPGM) risk model by integrating critical genes and oncogenic pathway alterations in LUAD patients from the DPH cohort. Based on publicly available LUAD datasets, we identified five genes, including BRCA2, Anaplastic lymphoma kinase (ALK), BRAF, EGFR, and Platelet-Derived Growth Factor Receptor Alpha (PDGFRA), according to the multivariable Cox regression analysis. The MPGM-low group showed significantly better overall survival (OS) compared to the MPGM-high group (p < 0.0001, area under the curve (AUC) = 0.754). The robust performance was validated in 55 LUAD patients from the DPH cohort and another LUAD dataset. Immune characteristics analysis revealed a higher proportion of primarily DCs and mononuclear cells in the MPGM-low risk group, while the MPGM-high risk group showed lower immune cells and higher tumor cell infiltration. CONCLUSION: This study provides a comprehensive genomic landscape of Chinese LUAD patients and develops an MPGM risk model for LUAD prognosis stratification. Further follow-up will be performed for the patients in the DPH cohort consistently to explore the resistance and prognosis genetic features.


Adenocarcinoma of Lung , Lung Neoplasms , Mutation , Humans , Male , Female , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/mortality , Adenocarcinoma of Lung/pathology , Prognosis , Middle Aged , Lung Neoplasms/genetics , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Aged , Retrospective Studies , ErbB Receptors/genetics , Biomarkers, Tumor/genetics , China/epidemiology , Adult , Clinical Relevance , East Asian People , Receptors, LDL , Tumor Suppressor Protein p53 , Proto-Oncogene Proteins p21(ras) , RNA-Binding Proteins
17.
Mol Biol Rep ; 51(1): 638, 2024 May 10.
Article En | MEDLINE | ID: mdl-38727891

BACKGROUND: Treatment-resistant depression (TRD) is a condition in a subset of depressed patients characterized by resistance to antidepressant medications. The global prevalence of TRD has been steadily increasing, yet significant advancements in its diagnosis and treatment remain elusive despite extensive research efforts. The precise underlying pathogenic mechanisms are still not fully understood. Epigenetic mechanisms play a vital role in a wide range of diseases. In recent years, investigators have increasingly focused on the regulatory roles of miRNAs in the onset and progression of TRD. miRNAs are a class of noncoding RNA molecules that regulate the translation and degradation of their target mRNAs via interaction, making the exploration of their functions in TRD essential for elucidating their pathogenic mechanisms. METHODS AND RESULTS: A systematic search was conducted in four databases, namely PubMed, Web of Science, Cochrane Library, and Embase, focusing on studies related to treatment-resistant depression and miRNAs. The search was performed using terms individually or in combination, such as "treatment-resistant depression," "medication-resistant depression," and "miRNAs." The selected articles were reviewed and collated, covering the time period from the inception of each database to the end of February 2024. We found that miRNAs play a crucial role in the pathophysiology of TRD through three main aspects: 1) involvement in miRNA-mediated inflammatory responses (including miR-155, miR-345-5p, miR-146a, and miR-146a-5p); 2) influence on 5-HT transport processes (including miR-674,miR-708, and miR-133a); and 3) regulation of synaptic plasticity (including has-miR-335-5p,has-miR- 1292-3p, let-7b, and let-7c). Investigating the differential expression and interactions of these miRNAs could contribute to a deeper understanding of the molecular mechanisms underlying TRD. CONCLUSIONS: miRNAs might play a pivotal role in the pathogenesis of TRD. Gaining a deeper understanding of the roles and interrelations of miRNAs in TRD will contribute to elucidating disease pathogenesis and potentially provide avenues for the development of novel diagnostic and therapeutic strategies.


Depressive Disorder, Treatment-Resistant , MicroRNAs , Humans , MicroRNAs/genetics , Depressive Disorder, Treatment-Resistant/genetics , Depressive Disorder, Treatment-Resistant/therapy , Antidepressive Agents/therapeutic use , Antidepressive Agents/pharmacology , Gene Expression Regulation , Epigenesis, Genetic
18.
J Colloid Interface Sci ; 668: 634-645, 2024 Aug 15.
Article En | MEDLINE | ID: mdl-38696991

Solid polymer electrolytes (SPEs) have been considered the most promising separators for all-solid-state lithium metal batteries (ASSLMBs) due to their ease of processing and low cost. However, the practical applications of SPEs in ASSLMBs are limited by their low ionic conductivities and mechanical strength. Herein, we developed a three-dimensional (3D) interconnected MXene (Ti3C2Tx) network and Li6.4La3Zr1.4Ta0.6O12 (LLZTO) particles synergistically reinforced polyethylene oxide (PEO)-based SPE, where the association of Li+ with ether-oxygen in PEO could be significantly weakened through the Lewis acid-base interactions between the electron-absorbing group (Ti-F, -O-) of Ti3C2Tx and Li+. Besides, the TFSI- in lithium salts could be immobilized by hydrogen bonds from the Ti-OH of Ti3C2Tx. The 3D interconnected Ti3C2Tx network not only alleviated the agglomeration of inorganic fillers (LLZTO), but also improved the mechanical strength of composite solid electrolyte (CSE). Consequently, the assembled Li||CSE||Li symmetric battery showed excellent cycling stability at 35 ℃ (stable cycling over 3000 h at 0.1 mA cm-2, 0.1 mAh cm-2) and -2 ℃ (stable cycling over 2500 h at 0.05 mA cm-2, 0.05 mAh cm-2). Impressively, the LiFePO4||CSE||Li battery showed a high discharge capacity of 145.3 mAh/g at 0.3 C after 300 cycles at 35 ℃. This rational structural design provided a new strategy for the preparation of high-performance solid-state electrolytes for lithium metal batteries.

19.
bioRxiv ; 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38712203

The ocular surface is a mucosal barrier tissue colonized by commensal microbes, which tune local immunity by eliciting IL-17 from conjunctival γδ T cells to prevent pathogenic infection. The commensal Corynebacterium mastitidis (C. mast) elicits protective IL-17 responses from conjunctival Vγ4 T cells through a combination of γδ TCR ligation and IL-1 signaling. Here, we identify Vγ6 T cells as a major C. mast-responsive subset in the conjunctiva and uncover its unique activation requirements. We demonstrate that Vγ6 cells require not only extrinsic (via dendritic cells) but also intrinsic TLR2 stimulation for optimal IL-17A response. Mechanistically, intrinsic TLR2 signaling was associated with epigenetic changes and enhanced expression of genes responsible for metabolic shift to fatty acid oxidation to support Il17a transcription. We identify one key transcription factor, IκBζ, which is upregulated by TLR2 stimulation and is essential for this program. Our study highlights the importance of intrinsic TLR2 signaling in driving metabolic reprogramming and production of IL-17A in microbiome-specific mucosal γδ T cells.

20.
Microb Pathog ; 191: 106669, 2024 May 01.
Article En | MEDLINE | ID: mdl-38697231

African swine fever (ASF) is a lethal disease caused by ASF virus (ASFV), severely impacting the global swine industry. Though nuclear acid-based detection methods are reliable, they are laboratory-dependent. In this study, we developed a device-independent, user friendly and cost-effective quantum dots based immunochromatographic strip (QDs-ICS) with high specificity and sensitivity for the rapid and on-site detection of ASFV antigen. For the preparation of the QDs-ICS, we generated a monoclonal antibody (mAb) mAb-8G8 and polyclonal antibody (pAb) against ASFV-p72 protein. The pAb was labelled with QDs to be used as the detection probe and the mAb-8G8 was coated on the nitrocellulose membrane as the test line. Our results proved that the strip displayed no cross-reactivity with other swine viruses and detection limit of the QDs-ICS was down to 1 ng/mL for the ASFV-p72 protein with great reproducibility. The strip also exhibited high stability with a storage period up to 12 months under room temperature. Twenty blind samples and one hundred clinical samples were examined by the QDs-ICS, conventional PCR and real-time PCR method, respectively. Results showed that the agreement rate between the QDs-ICS and PCR method was 100%, and the agreement rate between the strip and real-time PCR was 94%. The novel QDs-ICS developed here would be an effective tool for on-site detection of ASFV.

...