Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 15 de 15
1.
Cells ; 13(10)2024 May 17.
Article En | MEDLINE | ID: mdl-38786088

Cellular demise is a pivotal event in both developmental processes and disease states, with mitochondrial regulation playing an essential role. Traditionally, cell death was categorized into distinct types, considered to be linear and mutually exclusive pathways. However, the current understanding has evolved to recognize the complex and interconnected mechanisms of cell death, especially within apoptosis, pyroptosis, and necroptosis. Apoptosis, pyroptosis, and necroptosis are governed by intricate molecular pathways, with mitochondria acting as central decision-makers in steering cells towards either apoptosis or pyroptosis through various mediators. The choice between apoptosis and necroptosis is often determined by mitochondrial signaling and is orchestrated by specific proteins. The molecular dialogue and the regulatory influence of mitochondria within these cell death pathways are critical research areas. Comprehending the shared elements and the interplay between these death modalities is crucial for unraveling the complexities of cellular demise.


Cell Death , Mitochondria , Signal Transduction , Humans , Mitochondria/metabolism , Animals , Apoptosis , Pyroptosis , Necroptosis/genetics
2.
Adv Mater ; : e2311242, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38504494

Recent years have witnessed a growing interest in bio-based thermosetting resins in terms of environmental concerns and the desire for sustainable industrial practices. Beyond sustainability, utilizing the structural diversity of renewable feedstock to craft bio-based thermosets with customized functionalities is very worthy of expectation. There exist many bio-based compounds with inherently unique chemical structures and functions, some of which are even difficult to synthesize artificially. Over the past decade, great efforts are devoted to discovering/designing functional properties of bio-based thermosets, and notable progress have been made in antibacterial, antifouling, flame retardancy, serving as carbon precursors, and stimuli responsiveness, among others, largely expanding their application potential and future prospects. In this review, recent advances in the field of functional bio-based thermosets are presented, with a particular focus on molecular structures and design strategies for discovering functional properties. Examples are highlighted wherein functionalities are facilitated by the inherent structures of bio-based feedstock. Perspectives on issues regarding further advances in this field are proposed at the end.

3.
Sci Total Environ ; 922: 171313, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38417508

The resource-based treatment of Chinese cabbage waste by anaerobic fermentation can effectively mitigate air, soil, and groundwater pollution. However, the compatibility between fermentative microorganisms and the environment might be a crucial limiting factor for the resource recycling of Chinese cabbage waste. Therefore, the gain effect of microbial consortia (JMRS, JMRST, JMRSZ, JCCW, JCCWT and JCCWZ) induced by adaptive domestication for efficient conversion of Chinese cabbage waste by anaerobic fermentation were explored in this study. A total of 42 single subsamples with same weights were randomly divided into seven treatments: sterile deionized water (Control); anaerobic fermentation inoculated with JMRS (MRS); anaerobic fermentation inoculated with JMRST (MRST); anaerobic fermentation inoculated with JMRSZ (MRSZ); anaerobic fermentation inoculated with JCCW (CCW); anaerobic fermentation inoculated with JCCWT (CCWT); anaerobic fermentation inoculated with JCCWZ (CCWZ) and samples were taken on days 30 and 60 after anaerobic fermentation. The results exhibited that all the treatments contributed to high levels of lactic acid (178.77-201.79 g/kg dry matter) and low levels of ammonia-N (12.99-21.03 g/kg total nitrogen). Meanwhile, MRSZ enhanced (p < 0.05) acetic acid levels (1.53 g/kg dry matter) and resulted in the lowest yeast counts. Microbiologically, the addition of microbial consortia decreased the linear discriminant analysis (LDA) scores of Massilia and Stenotrophomonas maltophilia. Moreover, MRSZ enriched (p < 0.05) Lactobacillus hilgardii, and decreased (p < 0.05) the abundance of bacteria containing mobile elements and potentially pathogenic bacteria. In conclusion, JMRSZ improved the efficient conversion of Chinese cabbage waste for resource utilization.


Brassica , Microbial Consortia , Fermentation , Anaerobiosis , Domestication , Brassica/microbiology
4.
Polymers (Basel) ; 15(18)2023 Sep 18.
Article En | MEDLINE | ID: mdl-37765655

A multi-functional modifier, which could improve the mechanical and thermal performance simultaneously, is significant in composites production. Herein, inspired by the chemistry of mussel, an interfacial modifier named FPD was designed and synthesized through one simple step, which was attached by three functional groups (including catechol, N-H bond, and DOPO). Due to the innate properties of each functional group, FPD played multiple roles: adhere to the ramie fibers from catechol and cure with the epoxy resin from -NH-, an antiflaming property from DOPO, and the compatibilizer between ramie fibers and epoxy resin was also improved by changing the polarity of ramie fiber. All of the above functions can be proved by means of water contact angle (WCA), atomic force microscope (AFM), and scanning electron microscopy (SEM), etc. After solidification, the ramie fiber/epoxy composites demonstrated superior performances in terms of good mechanical properties and excellent flame retardant property. With the addition of 30 wt.% FPD, the tensile strength and modulus of the ramie/epoxy composite showed an improvement of 37.1% and 60.9%, and flexural strength and modulus of the composite were improved by 8.9% and 19.3% comparing with no addition composite. Moreover, the composite could achieve the goal for V-0 rating in the UL-94 test and LOI value was 34.6% when the addition of FPD reached 30 wt.%. This work provided us with an efficient method for fabricating nature fiber/epoxy composites with good properties.

5.
Cancer Cell Int ; 21(1): 327, 2021 Jun 30.
Article En | MEDLINE | ID: mdl-34193136

BACKGROUND: CD58 has been demonstrated to be abnormally expressed in multiple hematopoietic malignancies and solid tumors and plays an essential role in tumorigenesis and progression; however, its clinical significance and prognostic value in pancreatic ductal adenocarcinoma (PDAC) remain unknown. METHODS: Based on diverse online public databases and 81 PDAC samples of tissue microarray-based immunohistochemistry (IHC), we evaluated CD58 expression in PDAC patients and analyzed its association with clinicopathological characteristics, clinical outcomes, and infiltration of immune cells in PDAC. Furthermore, the correlation between CD58 and the cancer stem cell (CSC)-related, epithelial-mesenchymal transition (EMT)-related, and immune-related markers were detected. Besides, the functional enrichment analysis and related pathways were analyzed and visualized. RESULTS: CD58 expression was elevated in pancreatitis and PDAC tissues than normal pancreas or adjacent nontumor tissues. The positive cases of CD58 (e.g. more than 50% positive cells) in PDAC account for 95.06% (77/81). Upregulated CD58 in cancer tissues was associated with worse histological grade, larger tumor size, and poorer overall survival and disease-free survival in PDAC patients. Furthermore, Cox multivariate regression analysis revealed that CD58 was an independent prognostic factor in PDAC. CD58 expression was correlated with infiltrations of neutrophils, CD8+ T cells, and dendritic cells (DCs). In addition, correlation gene analysis indicated that CD58 expression was strongly correlated with immune-related, EMT-related, and CSC-related markers. Functional enrichment analysis and KEGG pathway manifested that CD58 might be involved in PDAC initiation and progression. CONCLUSIONS: CD58 expression is upregulated in PDAC tissues and its high expression is notably related to poor survival of PDAC. Therefore, CD58 may serve as a novel and effective marker for predicting the prognosis of PDAC patients.

6.
Cancer Cell Int ; 21(1): 137, 2021 Feb 26.
Article En | MEDLINE | ID: mdl-33637086

BACKGROUND: Emerging evidence has shown that intra-tumor immune features are associated with response to immune checkpoint blockade (ICB) therapy. Accordingly, patient stratification is needed for identifying target patients and designing strategies to improve the efficacy of ICB therapy. We aimed to depict the specific immune features of patients with pancreatic cancer and explore the implication of immune diversity in prognostic prediction and individualized immunotherapy. METHODS: From transcriptional profiles of 383 tumor samples in TCGA, ICGC, and GEO database, robust immune subtypes which had different response immunotherapy, including ICB therapy, were identified by consensus clustering with five gene modules. DEGs analysis and tumor microarray were used to screen and demonstrate potential targets for improving ICB therapy. RESULTS: Three subtypes of pancreatic cancer, namely cluster 1-3 (C1-C3), characterized with distinct immune features and prognosis, were generated. Of that, subtype C1 was an immune-cold type in lack of immune regulators, subtype C2, with an immunosuppression-dominated phenotype characterized by robust TGFß signaling and stromal reaction, showed the worst prognosis, subtype C3 was an immune-hot type, with massive immune cell infiltration and in abundance of immune regulators. The disparity of immune features uncovered the discrepant applicability of anti-PD-1/PD-L1 therapy and potential sensitivity to other alternative immunotherapy for each subtype. Patients in C3 were more suitable for anti-PD-1/PD-L1 therapy, while patients in the other two clusters may need combined strategies targeted on other immune checkpoints or oncogenic pathways. A promising target for improving anti-PD-1/PD-L1 treatment, TGM2, was screened out and its role in the regulation of PD-L1 was investigated for the first time. CONCLUSION: Collectively, immune features of pancreatic cancer contribute to distinct immunosuppressive mechanisms that are responsible for individualized immunotherapy. Despite pancreatic cancer being considered as a poor immunogenic cancer type, the derived immune subtypes may have implications in tailored designing of immunotherapy for the patients. TGM2 has potential synergistic roles with ICB therapy.

7.
Cancer Immunol Immunother ; 70(8): 2165-2177, 2021 Aug.
Article En | MEDLINE | ID: mdl-33454798

Pancreatic cancer is an inflammatory malignancy, and tumor-associated macrophages (TAMs) are the predominant inflammatory cells in tumor tissue. TAMs have complicated interactions with pancreatic cancer cells, however, the details and mechanisms remain largely unknown. In this study, transcriptomics and proteomics analyses were performed to explore the interactions between murine pancreatic cancer cells and TAMs. Dopamine (DA) has been reported to suppress inflammations. However, its roles in TAMs of pancreatic cancer have not been reported. Herein, the roles and mechanisms of DA to affect the chemotherapeutic efficacy for pancreatic cancer were studied. Multi-omics results revealed that there was a tumor-promoting vicious cycle involving murine pancreatic cancer cells and TAMs. DA substantially improved the chemotherapeutic efficacy both in vitro study and in immunocompetent murine pancreatic cancer models by suppression of the M2 characters of TAMs. Further studies found that activation of DRD4 by DA led to the decrease of cAMP, and then inhibited the activation of PKA/p38 signal pathway, which suppressed the tumor-promoting inflammation of TAMs. This study uncovers the reciprocal interactions between TAMs and pancreatic cancer cells using multi-omics techniques and presents that DA has synergistic roles with chemotherapy for pancreatic cancer by suppressing of TAM-derived inflammations.


Dopamine/metabolism , Inflammation/metabolism , Macrophages/metabolism , Pancreatic Neoplasms/metabolism , Animals , Cell Line , Cell Line, Tumor , Male , Mice , Mice, Inbred C57BL , RAW 264.7 Cells , Receptors, Dopamine D4/metabolism , Signal Transduction/physiology , Tumor Microenvironment/physiology
8.
BMC Surg ; 20(1): 265, 2020 Oct 31.
Article En | MEDLINE | ID: mdl-33129308

BACKGROUND: The clinical outcomes of patients who received distal pancreatectomy with splenectomy (DPS) and spleen-preserving distal pancreatectomy (SPDP) have been generally investigated. However, postoperative hematological changes after distal pancreatectomy with or without splenectomy are poorly understood. METHODS: Information from patients undergoing distal pancreatectomy (DP) between January 2014 and June 2019 at a single institution was reviewed. A linear mixed-effects model was used to compare dynamic hematological changes between different groups. RESULTS: A total of 302 patients who underwent DP were enrolled. In the long term, most postoperative hematological parameters remained significantly higher than preoperative levels in the DPS group, while postoperative lymphocyte, monocyte, basophil, and platelet levels returned to preoperative levels in the SPDP group. All postoperative hematological parameters except for red blood cell count and serum hemoglobulin level were significantly higher in the DPS group than in the SPDP group. There were no significant differences in hematological changes between the splenic vessel preservation (SVP) and Warshaw technique (WT) groups. CONCLUSIONS: Postoperative hematological changes were significantly different between the DPS and SPDP groups. Compared to DPS, SPDP reduced abnormal hematological changes caused by splenectomy. SVP and WT were comparable in terms of postoperative hematological changes.


Pancreatectomy , Pancreatic Neoplasms , Splenectomy , Cohort Studies , Female , Hematologic Diseases/blood , Hematologic Diseases/diagnosis , Hematologic Diseases/etiology , Hematologic Tests , Humans , Laparoscopy , Male , Pancreatectomy/adverse effects , Pancreatic Neoplasms/blood , Pancreatic Neoplasms/surgery , Splenectomy/adverse effects , Treatment Outcome
9.
Cancer Immunol Immunother ; 69(8): 1477-1492, 2020 Aug.
Article En | MEDLINE | ID: mdl-32285172

The interactions between tumor immune microenvironment (TIME) and pancreatic cancer cells can affect chemotherapeutic efficacy; however, the mechanisms still remain largely unknown. Thirty items in TIME were comprehensively screened by using tissue microarray from pancreatic cancer patients. Their expressions, interconnections and predictive roles for survival were analyzed. Twenty-one of 30 items could stratify the survival of the patients; however, multivariate analysis found that only 5 independent risk factors could predict worse survival (M2-polarized tumor-associated macrophages (TAMs), IgG4 positive cells, TGF-ß1, GM-CSF and lymphangiogenesis). They had a much higher expression levels in tumoral tissue, compared to peritumoral tissue. The Spearman analysis showed that M2-polarized TAM, TGF-ß1 and GM-CSF were positively correlated with pancreatic cancer stem cells (PCSC), angiogenesis and lymphangiogenesis. Both human and murine pancreatic cancer cells could induce M2-polarized TAM, which showed substantial roles to decease chemotherapeutic effects. After treated by gemcitabine, both human and murine pancreatic cancer cell lines expressed higher level of immune check points, PCSC markers and varieties of immunosuppressive factors; however, TGF-ß1 and GM-CSF had the highest increase. Based on the above results, TGF-ß1 and GM-CSF were proposed to be the optimal potential targets to improve chemotherapeutic effects. In immunocompetent murine models, we demonstrated that combined blockade of TGF-ß1 and GM-CSF improved the chemotherapeutic effects by inhibition of M2-polarized TAM and induction of CD8 positive T cells. This study presents a novel promising combined strategy to improve the chemotherapeutic effects for pancreatic cancer.


Carcinoma, Pancreatic Ductal/drug therapy , Deoxycytidine/analogs & derivatives , Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Neoplastic Stem Cells/drug effects , Pancreatic Neoplasms/drug therapy , Transforming Growth Factor beta1/antagonists & inhibitors , Tumor Microenvironment/drug effects , Animals , Antimetabolites, Antineoplastic/pharmacology , Apoptosis , Biomarkers, Tumor/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Proliferation , Cohort Studies , Deoxycytidine/pharmacology , Female , Gene Expression Regulation, Neoplastic , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Lymphangiogenesis/drug effects , Male , Mice , Mice, Inbred C57BL , Middle Aged , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Prognosis , Survival Rate , Transforming Growth Factor beta1/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays , Gemcitabine
10.
J Cancer ; 11(9): 2371-2381, 2020.
Article En | MEDLINE | ID: mdl-32201508

Background: C-X-C motif chemokine 5 (CXCL5) is an important attractant for immune cell accumulation in tumor tissues. Recent evidence has shown that CXCL5 could promote carcinogenesis and cancer progression in a variety of cancer types. However, the relationships between CXCL5, immune cell infiltration and pancreatic ductal adenocarcinoma (PDAC) remain largely unknown. This study aimed to explore the role and regulative mechanism of CXCL5 in PDAC carcinogenesis. Materials and Methods: The expression of CXCL5 in PDAC was analyzed based on online databases and tissue microarray staining, and Western blotting of CXCL5 in PDAC cell lines and patient samples. The correlation between CXCL5 expression and clinicopathological features, prognosis and immune cell infiltration in tumor tissues was analyzed. Results: High expression of CXCL5 was observed both in PDAC tumor tissue and PDAC cell lines, compared to normal pancreas tissues and normal ductal epithelium cells. High CXCL5 expression in tumor tissues was positively correlated with an advanced T stage (p=0.036), a positive tumor lymph node metastasis (p=0.014), a poor differentiation status (p=0.003) and a poor prognosis (p=0.001). Combination of CA242 and CXCL5 expression (p<0.0001) served as a better prognostic factor than CA242 alone (p=0.006). In addition, PDAC patients with high CXCL5 expression had more intratumoral M2 polarized macrophages (p=0.0248), neutrophils (p=0.0068) and IgG+ plasma cells (p=0.0133) than patients with low CXCL5 expression. Conclusions: The expression of CXCL5 is elevated in pancreatic cancer cells. High CXCL5 expression is positively correlated with poor survival and the increased infiltration of several types of immune suppressive cells. Thus, CXCL5 could be a promising therapeutic target for PDAC immunotherapy.

11.
ACS Omega ; 5(7): 3763-3773, 2020 Feb 25.
Article En | MEDLINE | ID: mdl-32118193

With the rapid development of bio-based polymers, polybenzoxazine derived from renewable resources has been widely investigated. However, there are few reports on the functional application of bio-based polybenzoxazine based on the special chemical structures of renewable compounds. In this work, an easy approach to prepare the polybenzoxazines with varied thermomechanical properties and excellent marine antifouling performance from renewable resources is presented. After a variety of main-chain-type benzoxazine polymers (MCBPs) were synthesized from the renewable daidzein, furfurylamine, polyetheramine, and paraformaldehyde, their chemical structures were identified by Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy (1H NMR). Then, their curing behaviors were monitored by differential scanning calorimetry and rheological tests. Results revealed that the cross-linked MCBPs with varied thermomechanical properties could be easily prepared by adjusting the molar ratio of polyetheramine and furfuramine. Notably, these cured MCBP films demonstrated excellent antibacterial and algaecidal properties due to the presence of daidzein and furan units. This work first presents the new application prospect of bio-based MCBPs, for example, in marine antifouling coatings.

12.
Anal Sci ; 32(3): 361-5, 2016.
Article En | MEDLINE | ID: mdl-26960619

Mercury (Hg) and its derivatives pose a serious threat to the environment and human health. Thus, the development of methods for the selective and sensitive determination of Hg(2+) is very important to understand its distribution, and to implement more detailed toxicological studies. Herein, we developed a new method for the detection of Hg(2+) based on the tricyanoethylene derivative and mercaptoethanol. This method could selectively detect Hg(2+) in a 100% aqueous solution by the naked-eye within the range of 1 - 60 µM. Importantly, this method also could detect Hg(2+) quantitatively by ratiometic absorption spectroscopy in the range of 0.1 - 6 µM with a detection limit of 55 nM. We anticipate that this proposed method will be used widely to monitor Hg(2+) in the environment.


Colorimetry/methods , Mercury/analysis , Water Pollutants, Chemical/analysis , Absorption, Physicochemical , Colorimetry/instrumentation , Hydrogen-Ion Concentration , Limit of Detection , Mercaptoethanol/chemistry , Models, Theoretical , Nitriles/chemistry , Sensitivity and Specificity , Solutions
13.
Luminescence ; 31(5): 1166-70, 2016 Aug.
Article En | MEDLINE | ID: mdl-26467672

Currently, there is a great need to develop methods for the selective detection of fluoride anions (F(-) ) owing to their toxicity in the environment and biological function in living systems. In this study, we developed a new fluorescent probe (probe 1) employing a Si-O bond as a highly selective recognition receptor for detecting F(-) via intramolecular charge transfer. Probe 1 could detect F(-) quantitatively using the turn-on fluorescence spectroscopy method with excellent sensitivity in the range of 4-38 µM and a detection limit of 0.26 µM; the detection time was < 17 min. We anticipate that probe 1 would be used widely to monitor F(-) in the environment. Copyright © 2015 John Wiley & Sons, Ltd.


Fluorescent Dyes/chemistry , Fluorides/analysis , Fluorides/chemistry , Anions/analysis , Fluorescent Dyes/chemical synthesis , Molecular Structure , Oxygen/chemistry , Silicon/chemistry , Spectrometry, Fluorescence
14.
Ying Yong Sheng Tai Xue Bao ; 25(7): 1955-62, 2014 Jul.
Article Zh | MEDLINE | ID: mdl-25345045

LED lighting has several unique advantages over traditional lighting, including the ability to control spectral composition, the ability to produce very high light levels with low radiant heat output when cooled properly, and the ability to maintain useful light output for years without replacement. LED light sources have the capability of controlling true spectral composition, allowing wavelengths to match plant photoreceptors to provide more optimal production to regulate plant morphology and nutritional quality. In this paper, the effects of different light qualities on the growth, photosynthetic response and nutritional quality of savoy were studied. With 'Juhua-Xiaobaye' savoy as the test plant, full red light, full blue light, red/blue (3/1) light, red/blue (7/1) light and white/red/blue (3/2/1) light generated by light-emitting diodes were applied with white light generated by fluorescent lamps as control. The results showed that red light could increase biomass and stem diameter, but blue light showed the opposite effect. The chlorophyll (a+b) content was the highest in the red/blue (7/1) light treatment, and chlorophyll (a+b) content was correlated with the red/blue ratio positively. Blue light decreased chlorophyll (a + b) content of savoy, and increased chlorophyll a/b. The photosynthetic rate (Pn) and transpiration rate under red light were the highest, and increased by 43.8% and 55.1% compared with the control. Intercellular CO2 concentration and conductance were the highest under blue light. The fluorescence parameters of the plant were significantly affected by light quality. Values of the maximal photochemical efficiency of PS II (Fv/Fm), Fv/Fo and Phi(PS II) were the highest under white light. Soluble sugar, soluble protein and vitamin C contents were the highest under red, blue and white light, respectively. Comprehensive analysis indicated that red/blue (7/1) light was the best light combination to increase leaf chlorophyll (a+b) content and net photosynthetic rate, as well as plant growth and nutritional quality.


Brassica/physiology , Light , Nutritive Value , Photosynthesis , Biomass , Chlorophyll , Chlorophyll A , Fluorescence , Plant Development , Plant Leaves , Plant Stems
15.
Biosens Bioelectron ; 52: 298-303, 2014 Feb 15.
Article En | MEDLINE | ID: mdl-24080208

Recently, growing attention has been paid to the accurate determination of fluoride anion (F(-)) in the environment and living systems for its toxicity and biological function investigation. In this paper, we developed a ratiometric visual and red-emitting fluorescent dual-channel probe (1) employed Si-O bond as a highly selective recognition receptor for imaging F(-) in living cells. Probe 1 possesses a potential internal charge transfer (ICT) structure, and displays a large (158 nm) red-shifted absorption spectrum and the color changes from yellow to blue upon addition of F(-) in the aqueous solution. In addition, probe 1 can be used to detect F(-) quantitatively by the ratiometric absorption and turn-on fluorescence spectroscopy methods with excellent sensitivity. Finally, the results of its application to bioimaging of F(-) in living cells show that probe 1 would be of great benefit to biomedical researchers for investigating the effects of fluoride in biological systems.


Anions/isolation & purification , Biosensing Techniques , Fluorides/isolation & purification , Spectrometry, Fluorescence , Absorption , Anions/chemistry , Cell Tracking , Fluorescent Dyes/chemistry , Fluorides/chemistry , Humans
...