Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Sleep ; 47(4)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37638817

RESUMEN

STUDY OBJECTIVES: Mounting evidence indicated the correlation between sleep and cerebral small vessel disease (CSVD). However, little is known about the exact causality between poor sleep and white matter injury, a typical signature of CSVD, as well as the underlying mechanisms. METHODS: Spontaneously hypertensive rats (SHR) and control Wistar Kyoto rats were subjected to sleep fragmentation (SF) for 16 weeks. The effects of chronic sleep disruption on the deep white matter and cognitive performance were observed. RESULTS: SHR were validated as a rat model for CSVD. Fragmented sleep induced strain-dependent white matter abnormalities, characterized by reduced myelin integrity, impaired oligodendrocytes precursor cells (OPC) maturation and pro-inflammatory microglial polarization. Partially reversible phenotypes of OPC and microglia were observed in parallel following sleep recovery. CONCLUSIONS: Long-term SF-induced pathological effects on the deep white matter in a rat model of CSVD. The pro-inflammatory microglial activation and the block of OPC maturation may be involved in the mechanisms linking sleep to white matter injury.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Sustancia Blanca , Ratas , Animales , Privación de Sueño , Ratas Endogámicas SHR , Sueño , Ratas Endogámicas WKY , Enfermedades de los Pequeños Vasos Cerebrales/complicaciones , Enfermedades de los Pequeños Vasos Cerebrales/patología
2.
Neurosci Bull ; 40(4): 500-516, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37755674

RESUMEN

Parkinson's disease (PD) is a complicated neurodegenerative disease, characterized by the accumulation of α-synuclein (α-syn) in Lewy bodies and neurites, and massive loss of midbrain dopamine neurons. Increasing evidence suggests that gut microbiota and microbial metabolites are involved in the development of PD. Among these, short-chain fatty acids (SCFAs), the most abundant microbial metabolites, have been proven to play a key role in brain-gut communication. In this review, we analyze the role of SCFAs in the pathology of PD from multiple dimensions and summarize the alterations of SCFAs in PD patients as well as their correlation with motor and non-motor symptoms. Future research should focus on further elucidating the role of SCFAs in neuroinflammation, as well as developing novel strategies employing SCFAs and their derivatives to treat PD.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/metabolismo , Enfermedades Neurodegenerativas/patología , Encéfalo/patología , Mesencéfalo/metabolismo , Ácidos Grasos Volátiles/metabolismo
3.
Psychiatry Investig ; 20(11): 1045-1053, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37997332

RESUMEN

OBJECTIVE: To verify effects of rs1061622 at tumor necrosis factor-α receptor II (TNF-RII) gene (TNF-RII) on post-traumatic stress disorder (PTSD) and its interactive effects with PTSD on serum lipids levels in adolescents. METHODS: PTSD was measured by PTSD Checklist-Civilian Version (PCL-C) in 699 adolescent survivors at 6 months after Wenchuan earthquake in China. A polymerase chain reaction and restriction fragment length polymorphism assay were utilized for TNF-RII rs1061622 genotyping followed by verification using DNA sequencing. Serum triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol were tested using routine methods. RESULTS: G (deoxyguanine) allele carriers had higher PCL-C scores than TT (deoxythymidine) homozygotes in female subjects. Female adolescents had higher PCL-C scores than male subjects in TT homozygotes. Predictors of PTSD prevalence and severity were different between G allele carriers and TT homozygotes. Subjects with PTSD had lower TG, TG/HDL-C, TC/HDL-C, and higher HDL-C than adolescents without PTSD in male G allele carriers. G allele carriers had higher TG/HDL-C and TC/HDL-C than TT homozygotes in male adolescents without PTSD, and lower TG and TG/HDL-C in male PTSD patients. G allele carriers had higher TG than TT homozygotes only in female adolescents without PTSD. CONCLUSION: These results suggest reciprocal actions of TNF-RII rs1061622 with other factors on PTSD severity, interplays of TNF-RII rs1061622 with PTSD on serum lipid levels, and novel treatment strategies for PTSD and comorbidities of PTSD with hyperlipidemia among adolescents with different genetic backgrounds of TNF-RII rs1061622 after experiencing traumatic events.

4.
iScience ; 26(11): 108130, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37876795

RESUMEN

Parkinson's disease (PD) is characterized by the irreversible loss of dopaminergic neurons and the accumulation of α-synuclein in Lewy bodies. The oligomeric α-synuclein (O-αS) is the most toxic form of α-synuclein species, and it has been reported to be a robust inflammatory mediator. Mutations in Leucine-Rich Repeat Kinase 2 (LRRK2) are also genetically linked to PD and neuroinflammation. However, how O-αS and LRRK2 interact in glial cells remains unclear. Here, we reported that LRRK2 G2019S mutation, which is one of the most frequent causes of familial PD, enhanced the effects of O-αS on astrocytes both in vivo and in vitro. Meanwhile, inhibition of LRRK2 kinase activity could relieve the inflammatory effects of both LRRK2 G2019S and O-αS. We also demonstrated that nuclear factor κB (NF-κB) pathway might be involved in the neuroinflammatory responses. These findings revealed that inhibition of LRRK2 kinase activity may be a viable strategy for suppressing neuroinflammation in PD.

5.
Adv Sci (Weinh) ; 10(25): e2206663, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37404090

RESUMEN

Endocrine therapy is the frontline treatment for estrogen receptor (ER) positive breast cancer patients. However, the primary and acquired resistance to endocrine therapy drugs remain as a major challenge in the clinic. Here, this work identifies an estrogen-induced lncRNA, LINC02568, which is highly expressed in ER-positive breast cancer and functional important in cell growth in vitro and tumorigenesis in vivo as well as endocrine therapy drug resistance. Mechanically, this work demonstrates that LINC02568 regulates estrogen/ERα-induced gene transcriptional activation in trans by stabilizing ESR1 mRNA through sponging miR-1233-5p in the cytoplasm. Meanwhile, LINC02568 contributes to tumor-specific pH homeostasis by regulating carbonic anhydrase CA12 in cis in the nucleus. The dual functions of LINC02568 together contribute to breast cancer cell growth and tumorigenesis as well as endocrine therapy drug resistance. Antisense oligonucleotides (ASO) targeting LINC02568 significantly inhibits ER-positive breast cancer cell growth in vitro and tumorigenesis in vivo. Furthermore, combination treatment with ASO targeting LINC02568 and endocrine therapy drugs or CA12 inhibitor U-104 exhibits synergistic effects on tumor growth. Taken together, the findings reveal the dual mechanisms of LINC02568 in regulating ERα signaling and pH homeostasis in ER-positive breast cancer, and indicated that targeting LINC02568 might represent a potential therapeutic avenue in the clinic.


Asunto(s)
Neoplasias de la Mama , ARN Largo no Codificante , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Receptor alfa de Estrógeno/genética , Receptores de Estrógenos/uso terapéutico , ARN Largo no Codificante/genética , Línea Celular Tumoral , Estrógenos/uso terapéutico , Resistencia a Antineoplásicos/genética , Carcinogénesis
6.
Diabetes Metab Syndr Obes ; 16: 1555-1565, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37275940

RESUMEN

Aim: To explore anthropometric, metabolic and dietary factors associated with and their interplays with the Val66Met polymorphism at brain-derived neurotrophic factor (BDNF) gene (Bdnf) on serum BDNF levels in adolescents. Methods: Serum BDNF levels were quantified using an enzyme-linked immunosorbent assay in 644 high school students (278 males/366 females). A polymerase chain reaction and restriction fragment length polymorphism assay were utilized for Bdnf Val66Met genotyping followed by verification using DNA sequencing. Serum levels of metabolic characteristics were assayed by routine methods. The intake of macro and micronutrients was collected by a three-day food record. Results: Serum BDNF levels were found to be significantly different in the subjects with different genotypes of Bdnf Val66Met (Val/Val homozygotes, 60.05 ± 28.07 ng/mL vs Val/Met heterozygotes, 56.37 ± 29.34 ng/mL vs Met/Met homozygotes, 51.32 ± 24.54 ng/mL, p = 0.022). Among the 36 tested variables, waist-hip ratio (WHR) (ß = -0.163, p < 0.001), iodine intake (ß = 0.132, p = 0.001), heart rate (ß = 0.108, p = 0.005), high-density lipoprotein cholesterol (HDL-C) (ß = 0.098, p = 0.011) and dietary fiber intake (ß = 0.082, p = 0.084) were the predictor of serum BDNF levels, while SBP (ß = 0.097, p = 0.013) and WHR (ß = 0.091, p = 0.021) were related with Bdnf Val66Met. Moreover, WHR was observed to play a partial mediating role in the relationship between Bdnf Val66Met and serum BDNF levels (95% CI [-1.161, -0.087]) and contribute 13.05% of its total effect on serum BDNF levels. Conclusion: There are interplays between WHR and Bdnf Val66Met on serum BDNF levels, which may be among the explanations for the previous heterogeneous reports and provide novel insights into the regulation of serum BDNF levels.

7.
Cell Mol Immunol ; 20(4): 351-364, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36864189

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced cytokine storm is closely associated with coronavirus disease 2019 (COVID-19) severity and lethality. However, drugs that are effective against inflammation to treat lethal COVID-19 are still urgently needed. Here, we constructed a SARS-CoV-2 spike protein-specific CAR, and human T cells infected with this CAR (SARS-CoV-2-S CAR-T) and stimulated with spike protein mimicked the T-cell responses seen in COVID-19 patients, causing cytokine storm and displaying a distinct memory, exhausted, and regulatory T-cell phenotype. THP1 remarkably augmented cytokine release in SARS-CoV-2-S CAR-T cells when they were in coculture. Based on this "two-cell" (CAR-T and THP1 cells) model, we screened an FDA-approved drug library and found that felodipine, fasudil, imatinib, and caspofungin were effective in suppressing the release of cytokines, which was likely due to their ability to suppress the NF-κB pathway in vitro. Felodipine, fasudil, imatinib, and caspofungin were further demonstrated, although to different extents, to attenuate lethal inflammation, ameliorate severe pneumonia, and prevent mortality in a SARS-CoV-2-infected Syrian hamster model, which were also linked to their suppressive role in inflammation. In summary, we established a SARS-CoV-2-specific CAR-T-cell model that can be utilized as a tool for anti-inflammatory drug screening in a fast and high-throughput manner. The drugs identified herein have great potential for early treatment to prevent COVID-19 patients from cytokine storm-induced lethality in the clinic because they are safe, inexpensive, and easily accessible for immediate use in most countries.


Asunto(s)
COVID-19 , Receptores Quiméricos de Antígenos , Humanos , SARS-CoV-2/metabolismo , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Caspofungina , Felodipino , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , Inflamación , Citocinas/metabolismo
8.
Transl Neurodegener ; 12(1): 8, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36782262

RESUMEN

Disruptions of circadian rhythms and sleep cycles are common among neurodegenerative diseases and can occur at multiple levels. Accumulating evidence reveals a bidirectional relationship between disruptions of circadian rhythms and sleep cycles and neurodegenerative diseases. Circadian disruption and sleep disorders aggravate neurodegeneration and neurodegenerative diseases can in turn disrupt circadian rhythms and sleep. Importantly, circadian disruption and various sleep disorders can increase the risk of neurodegenerative diseases. Thus, harnessing the circadian biology findings from preclinical and translational research in neurodegenerative diseases is of importance for reducing risk of neurodegeneration and improving symptoms and quality of life of individuals with neurodegenerative disorders via approaches that normalize circadian in the context of precision medicine. In this review, we discuss the implications of circadian disruption and sleep disorders in neurodegenerative diseases by summarizing evidence from both human and animal studies, focusing on the bidirectional links of sleep and circadian rhythms with prevalent forms of neurodegeneration. These findings provide valuable insights into the pathogenesis of neurodegenerative diseases and suggest a promising role of circadian-based interventions.


Asunto(s)
Enfermedades Neurodegenerativas , Trastornos del Sueño-Vigilia , Animales , Humanos , Calidad de Vida , Sueño , Ritmo Circadiano , Enfermedades Neurodegenerativas/epidemiología
9.
Inflamm Res ; 72(3): 443-462, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36598534

RESUMEN

BACKGROUND: Parkinson's disease (PD) is the second most common neurodegenerative disease, and is characterized by accumulation of α-synuclein (α-syn). Neuroinflammation driven by microglia is an important pathological manifestation of PD. α-Syn is a crucial marker of PD, and its accumulation leads to microglia M1-like phenotype polarization, activation of NLRP3 inflammasomes, and impaired autophagy and phagocytosis in microglia. Autophagy of microglia is related to degradation of α-syn and NLRP3 inflammasome blockage to relieve neuroinflammation. Microglial autophagy and phagocytosis of released α-syn or fragments from apoptotic neurons maintain homeostasis in the brain. A variety of PD-related genes such as LRRK2, GBA and DJ-1 also contribute to this stability process. OBJECTIVES: Further studies are needed to determine how α-syn works in microglia. METHODS: A keyword-based search was performed using the PubMed database for published articles. CONCLUSION: In this review, we discuss the interaction between microglia and α-syn in PD pathogenesis and the possible mechanism of microglial autophagy and phagocytosis in α-syn clearance and inhibition of neuroinflammation. This may provide a novel insight into treatment of PD.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Autofagia , Inflamasomas/metabolismo , Microglía/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Enfermedades Neuroinflamatorias , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Fagocitosis
10.
Neurotox Res ; 41(2): 177-186, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36662411

RESUMEN

Circadian dysfunction is a common non-motor symptom in Parkinson's disease (PD). The potential influence of aggravated α-synuclein (SNCA) on circadian disruption remains unclear. SNCAA53T-overexpressing transgenic mice (SNCAA53T mice) and wild-type (WT) littermates were used in this study. The energy metabolism cage test showed differences in 24-h activity pattern between SNCAA53T and WT mice. When compared with the age-matched littermates, brain and muscle ARNT-like 1 (BMAL1) was downregulated in SNCAA53T mice. BMAL1 was downregulated in PC12 cells overexpressing SNCA. Degradation of BMAL1 protein remained unchanged after overexpression of SNCA, while its mRNA level decreased. miRNA (miR)-155 was upregulated by overexpression of SNCA, and downregulation of BMAL1 was partially reversed by transfection with miR-155 inhibitor. Our findings demonstrated that overexpression of SNCA induced biorhythm disruption and downregulated BMAL1 expression through decreasing stability of BMAL1 mRNA via miR-155.


Asunto(s)
MicroARNs , Enfermedad de Parkinson , Ratas , Ratones , Animales , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Enfermedad de Parkinson/metabolismo , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Encéfalo/metabolismo , Ratones Transgénicos , Músculos , Ritmo Circadiano/genética , MicroARNs/genética , MicroARNs/metabolismo
11.
China Tropical Medicine ; (12): 16-2023.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-974103

RESUMEN

@#Abstract: Objective To investigate the distribution characteristics of HCV genotypes and subtypes in patients with HIV (human immunodeficiency virus, HIV)/HCV co-infection in Kunming based on the nucleocapsid protein gene sequence of HCV (hepatitis C virus). Methods Serum was collected from HIV/HCV co-infected patients with household registration in 14 county-level cities, districts and counties under the jurisdiction of Kunming, who admitted to Yunnan Provincial Infectious Disease Hospital from March to August 2019. The viral RNA was extracted from the serum, reverse transcribed to synthesize cDNA, and the HCV nucleocapsid protein gene-specific primers were used for nested PCR amplification. The positive amplification products were sequenced, bioinformatics software such as DNAstar and MEGAX were used for sequence analysis. Results A total of 64 samples from co-infected patients with clinical diagnosis of suspected HIV/HCV were collected and amplified by HCV nucleocapsid protein gene-specific primers, of which 17 samples were amplified positively. The results of sequence analysis showed that the sequences of 9 cases were located in the same evolutionary branch as the HCV 3b subtype sequence, and the nucleotide homology was 93.3%-95.2%; the sequences of 5 cases were located in the same evolutionary branch as the HCV 1b subtype sequence, and the nucleotide homology was 96.8%-97.6%; the sequence of one case and the subtype sequence of HCV 3a gene were located in the same evolutionary branch, and the nucleotide homology was 95.2%; the sequence of one case and HCV 6n gene subtype sequence were located in the same evolutionary branch, and the nucleotide homology was 97.9%; One case was located in the same evolutionary branch as the HCV 6u gene subtype sequence, and the nucleotide homology was 98.4%. Conclusions HCV 1b, HCV 3a, HCV 3b, HCV 6n and HCV 6u genotypes or subtypes of HCV are prevalent in Kunming, and HCV 3b is the most prevalent genotype.

12.
iScience ; 25(12): 105476, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36404922

RESUMEN

Some Parkinson's disease (PD)-causative/risk genes, including the PD-associated kinase leucine-rich repeat kinase 2 (LRRK2), are involved in membrane dynamics. Although LRRK2 and other PD-associated genes are believed to regulate synaptic functions, axonal transport, and endolysosomal activity, it remains unclear whether a common pathological pathway exists. Here, we report that the loss of Lrrk, an ortholog of human LRRK2, leads to the accumulation of the lysosome-related organelle regulator, Arl8 along with dense core vesicles at the most distal boutons of the neuron terminals in Drosophila. Moreover, the inactivation of a small GTPase Rab3 and altered Auxilin activity phenocopied Arl8 accumulation. The accumulation of Arl8-positive vesicles is UNC-104-dependent and modulated by PD-associated genes, Auxilin, VPS35, RME-8, and INPP5F, indicating that VPS35, RME-8, and INPP5F are upstream regulators of Lrrk. These results indicate that certain PD-related genes, along with LRRK2, drive precise neuroaxonal transport of dense core vesicles.

13.
Nucleic Acids Res ; 50(18): 10230-10248, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36124682

RESUMEN

Estrogen and estrogen receptor alpha (ERα)-induced gene transcription is tightly associated with ERα-positive breast carcinogenesis. ERα-occupied enhancers, particularly super-enhancers, have been suggested to play a vital role in regulating such transcriptional events. However, the landscape of ERα-occupied super-enhancers (ERSEs) as well as key ERα-induced target genes associated with ERSEs remain to be fully characterized. Here, we defined the landscape of ERSEs in ERα-positive breast cancer cell lines, and demonstrated that bromodomain protein BRD4 is a master regulator of the transcriptional activation of ERSEs and cognate ERα target genes. RET, a member of the tyrosine protein kinase family of proteins, was identified to be a key ERα target gene of BRD4-regulated ERSEs, which, in turn, is vital for ERα-induced gene transcriptional activation and malignant phenotypes through activating the RAS/RAF/MEK2/ERK/p90RSK/ERα phosphorylation cascade. Combination therapy with BRD4 and RET inhibitors exhibited additive effects on suppressing ERα-positive breast cancer both in vitro and in vivo, comparable with that of standard endocrine therapy tamoxifen. Furthermore, combination therapy re-sensitized a tamoxifen-resistant ERα-positive breast cancer cell line to tamoxifen treatment. Taken together, our data uncovered the critical role of a super-enhancer-associated positive feedback loop constituting BRD4/ERα-RET-ERα in ERα-positive breast cancer, and suggested that targeting components in this loop would provide a new therapeutic avenue for treating ERα-positive breast cancer in the clinic.


Asunto(s)
Neoplasias de la Mama , Receptor alfa de Estrógeno , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proteínas de Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Resistencia a Antineoplásicos , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Estrógenos , Retroalimentación Fisiológica , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-ret/genética , Proteínas Proto-Oncogénicas c-ret/metabolismo , Proteínas Proto-Oncogénicas c-ret/uso terapéutico , Tamoxifeno/farmacología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
Hum Mol Genet ; 31(15): 2623-2638, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35313349

RESUMEN

The mitochondrial kinase PTEN-induced kinase 1 (PINK1) and cytosolic ubiquitin ligase (E3) Parkin/PRKN are involved in mitochondrial quality control responses. PINK1 phosphorylates ubiquitin and the Parkin ubiquitin-like (Ubl) domain at serine 65 and promotes Parkin activation and translocation to damaged mitochondria. Upon Parkin activation, the Ubl domain is ubiquitinated at lysine (K) 27 and K48 residues. However, the contribution of K27/K48 ubiquitination toward Parkin activity remains unclear. In this study, ubiquitination of K56 (corresponding to K27 in the human), K77 (K48 in the human) or both was blocked by generating Drosophila Parkin (dParkin) mutants to examine the effects of Parkin Ubl domain ubiquitination on Parkin activation in Drosophila. The dParkin, in which K56 was replaced with arginine (dParkin K56R), rescued pupal lethality in flies by co-expression with PINK1, whereas dParkin K77R could not. The dParkin K56R exhibited reduced abilities of mitochondrial fragmentation and motility arrest, which are mediated by degrading Parkin E3 substrates Mitofusin and Miro, respectively. Pathogenic dParkin K56N, unlike dParkin K56R, destabilized the protein, suggesting that not only was dParkin K56N non-ubiquitin-modified at K56, but also the structure of the Ubl domain for activation was largely affected. Ubiquitin attached to K27 of the Ubl domain during PINK1-mediated Parkin activation was likely to be phosphorylated because human Parkin K27R weakened Parkin self-binding and activation in trans. Therefore, our findings suggest a new mechanism of Parkin activation, where an activation complex is formed through phospho-ubiquitin attachment on the K27 residue of the Parkin Ubl domain.


Asunto(s)
Proteínas de Drosophila , Ubiquitina , Animales , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Humanos , Lisina , Fosforilación , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas , Ubiquitina/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
15.
Mol Ther ; 29(10): 3011-3026, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34058385

RESUMEN

Glioblastoma (GBM) is the deadliest brain malignancy without effective treatments. Here, we reported that epidermal growth factor receptor-targeted chimeric antigen receptor T cells (EGFR CAR-T) were effective in suppressing the growth of GBM cells in vitro and xenografts derived from GBM cell lines and patients in mice. However, mice soon acquired resistance to EGFR CAR-T cell treatment, limiting its potential use in the clinic. To find ways to improve the efficacy of EGFR CAR-T cells, we performed genomics and transcriptomics analysis for GBM cells incubated with EGFR CAR-T cells and found that a large cohort of genes, including immunosuppressive genes, as well as enhancers in vicinity are activated. BRD4, an epigenetic modulator functioning on both promoters and enhancers, was required for the activation of these immunosuppressive genes. Accordingly, inhibition of BRD4 by JQ1 blocked the activation of these immunosuppressive genes. Combination therapy with EGFR CAR-T cells and JQ1 suppressed the growth and metastasis of GBM cells and prolonged survival in mice. We demonstrated that transcriptional modulation by targeting epigenetic regulators could improve the efficacy of immunotherapy including CAR-T, providing a therapeutic avenue for treating GBM in the clinic.


Asunto(s)
Azepinas/administración & dosificación , Neoplasias Encefálicas/terapia , Proteínas de Ciclo Celular/metabolismo , Receptores ErbB/inmunología , Glioblastoma/terapia , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/metabolismo , Factores de Transcripción/metabolismo , Triazoles/administración & dosificación , Animales , Azepinas/farmacología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Terapia Combinada , Epigénesis Genética/efectos de los fármacos , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Ratones , Metástasis de la Neoplasia , Factores de Transcripción/antagonistas & inhibidores , Triazoles/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Adv Sci (Weinh) ; 8(9): 2004635, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33977073

RESUMEN

Emerging evidence suggested that epigenetic regulators can exhibit both activator and repressor activities in gene transcriptional regulation and disease development, such as cancer. However, how these dual activities are regulated and coordinated in specific cellular contexts remains elusive. Here, it is reported that KDM5C, a repressive histone demethylase, unexpectedly activates estrogen receptor alpha (ERα)-target genes, and meanwhile suppresses type I interferons (IFNs) and IFN-stimulated genes (ISGs) to promote ERα-positive breast cancer cell growth and tumorigenesis. KDM5C-interacting protein, ZMYND8, is found to be involved in both processes. Mechanistically, KDM5C binds to active enhancers and recruits the P-TEFb complex to activate ERα-target genes, while inhibits TBK1 phosphorylation in the cytosol to repress type I IFNs and ISGs. Pharmacological inhibition of both ERα and KDM5C is effective in inhibiting cell growth and tumorigenesis. Taken together, it is revealed that the dual activator and repressor nature of an epigenetic regulator together contributes to cancer development.


Asunto(s)
Neoplasias de la Mama/genética , Carcinogénesis/genética , Transformación Celular Neoplásica/genética , Histona Demetilasas/genética , Activación Transcripcional/genética , Línea Celular Tumoral , Proliferación Celular/genética , Femenino , Humanos
17.
Aging Cell ; 20(6): e13375, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33964119

RESUMEN

Parkinson's disease (PD) is one of the most common neurodegenerative diseases. Although its pathogenesis remains unclear, a number of studies indicate that microglia-mediated neuroinflammation makes a great contribution to the pathogenesis of PD. Melatonin receptor 1 (MT1) is widely expressed in glia cells and neurons in substantia nigra (SN). Neuronal MT1 is a neuroprotective factor, but it remains largely unknown whether dysfunction of microglial MT1 is involved in the PD pathogenesis. Here, we found that MT1 was reduced in microglia of SN in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. Microglial MT1 activation dramatically inhibited lipopolysaccharide (LPS)-induced neuroinflammation, whereas loss of microglial MT1 aggravated it. Metabolic reprogramming of microglia was found to contribute to the anti-inflammatory effects of MT1 activation. LPS-induced excessive aerobic glycolysis and impaired oxidative phosphorylation (OXPHOS) could be reversed by microglial MT1 activation. MT1 positively regulated pyruvate dehydrogenase alpha 1 (PDHA1) expression to enhance OXPHOS and suppress aerobic glycolysis. Furthermore, in LPS-treated microglia, MT1 activation decreased the toxicity of conditioned media to the dopaminergic (DA) cell line MES23.5. Most importantly, the anti-inflammatory effects of MT1 activation were observed in LPS-stimulated mouse model. In general, our study demonstrates that MT1 activation inhibits LPS-induced microglial activation through regulating its metabolic reprogramming, which provides a mechanistic insight for microglial MT1 in anti-inflammation.


Asunto(s)
Microglía/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedad de Parkinson/metabolismo , Receptor de Melatonina MT1/metabolismo , Animales , Modelos Animales de Enfermedad , Indenos/farmacología , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/patología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Receptor de Melatonina MT1/agonistas
18.
Cancer Immunol Res ; 9(6): 707-722, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33875483

RESUMEN

EGFR-targeted chimeric antigen receptor (CAR) T cells are potent and specific in suppressing the growth of triple-negative breast cancer (TNBC) in vitro and in vivo. However, in this study, a subset of mice soon acquired resistance, which limits the potential use of EGFR CAR T cells. We aimed to find a way to overcome the observed resistance. Transcriptomic analysis results revealed that EGFR CAR T-cell treatment induced a set of immunosuppressive genes, presumably through IFNγ signaling, in EGFR CAR T-cell-resistant TNBC tumors. The EGFR CAR T-cell-induced immunosuppressive genes were associated with EGFR CAR T-cell-activated enhancers and were especially sensitive to THZ1, a CDK7 inhibitor we screened out of a panel of small molecules targeting epigenetic modulators. Accordingly, combination therapy with THZ1 and EGFR CAR T cells suppressed immune resistance, tumor growth, and metastasis in TNBC tumor models, including human MDA-MB-231 cell-derived and TNBC patient-derived xenografts, and mouse EMT6 cell-derived allografts. Taken together, we demonstrated that transcriptional modulation using epigenetic inhibitors could overcome CAR T-cell therapy-induced immune resistance, thus providing a therapeutic avenue for treating TNBC in the clinic.


Asunto(s)
Antineoplásicos/farmacología , Receptores ErbB/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T/inmunología , Neoplasias de la Mama Triple Negativas/metabolismo , Animales , Antineoplásicos/metabolismo , Línea Celular Tumoral , Quinasas Ciclina-Dependientes , Quimioterapia Combinada , Receptores ErbB/inmunología , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Ratones SCID , Receptores Quiméricos de Antígenos/inmunología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Ensayos Antitumor por Modelo de Xenoinjerto , Quinasa Activadora de Quinasas Ciclina-Dependientes
19.
Clin Transl Immunology ; 9(5): e01135, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32373345

RESUMEN

OBJECTIVES: Triple-negative breast cancer (TNBC) is well known for its strong invasiveness, rapid recurrence and poor prognosis. Immunotherapy, including chimeric antigen receptor-modified T (CAR-T) cells, has emerged as a promising tool to treat TNBC. The identification of a specific target tumor antigen and the design of an effective CAR are among the many challenges of CAR-T therapy. METHODS: We reported that epidermal growth factor receptor (EGFR) is highly expressed in TNBC and consequently designed an optimal third generation of CAR targeting EGFR. The efficacy of primary T lymphocytes infected with EGFR CAR lentivirus (EGFR CAR-T) against TNBC was evaluated both in vitro and in vivo. The signalling pathways activated in tumor and EGFR CAR-T cells were revealed by RNA sequencing analysis. RESULTS: Third-generation EGFR CAR-T cells exerted potent and specific suppression of TNBC cell growth in vitro, whereas limited cytotoxicity was observed towards normal breast epithelial cells or oestrogen receptor-positive breast cancer cells. This capability was further demonstrated in vivo in a xenograft mouse model, with minimal off-tumor cytotoxicity. Mechanistically, in vitro stimulation with TNBC cells induced the expansion of naïve-associated EGFR CAR-T cells and enhanced their persistence. Furthermore, EGFR CAR-T cells activated the interferon γ, granzyme-perforin-PARP and Fas-FADD-caspase signalling pathways in TNBC cells. CONCLUSION: We demonstrate that EGFR is a relevant immunotherapeutic target in TNBC, and EGFR CAR-T exhibits potent and specific antitumor activity against TNBC, suggesting the potential of this third-generation EGFR CAR-T as an immunotherapy tool to treat TNBC in the clinic.

20.
J Orthop Surg (Hong Kong) ; 28(1): 2309499020908354, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32129145

RESUMEN

PURPOSE: To date, the best treatment of acute Achilles tendon rupture (AATR) is still inconclusive. Achillon seems to be a promising approach with satisfactory function and low complication rate. We hypothesize a modified minimally invasive repair (MMIR), which provides direct visualization of proximal tendon stump without specialized equipment that could provide comparable results. This trial is aimed to evaluate the functional and surgical outcomes of MMIR comparing with Achillon. METHODS: From February 2013 to February 2017, 114 patients with AATR were enrolled in this trial, underwent an alternative operation (Achillon or MMIR), and accelerated rehabilitation protocol. Forty-four patients took the Achillon and the other 70 patients took the MMIR at their subjective choice. One hundred eleven full follow-up data were obtained including Achilles tendon total rupture score (ATRS), time back to work, rerupture rate, overall complication rate, and operation time. RESULTS: There was no significant difference between groups in demographic characters. There was no statistical difference between both groups regarding to time return to work and ATRS at 3rd, 6th, 12th, and 24th month, respectively. Five reruptures and two Achilles tendons tethering to skins were found in the Achillon group, and two reruptures and one sural nerve injury in the MMIR group. No wound infection and dehiscence occurred. Overall complication rate in the Achillon group is higher (16.3% vs. 4.4%, p = 0.044). The operation time of Achillon is less than MMIR (34.84 vs. 39.71, p < 0.001). CONCLUSION: Both techniques combining with accelerated rehabilitation showed to be reliable and effective. MMIR is safer and more economical, and Achillon is faster.


Asunto(s)
Tendón Calcáneo/lesiones , Técnicas de Sutura , Traumatismos de los Tendones/cirugía , Enfermedad Aguda , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Procedimientos Quirúrgicos Mínimamente Invasivos/métodos , Tempo Operativo , Recuperación de la Función , Rotura/cirugía , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...