Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Int J Radiat Biol ; : 1-12, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136547

RESUMEN

PURPOSE: Lipidomics is an important tool for triaging exposed individuals, and helps early adoption of prevention and control strategies. The purpose of this study was to screen significantly perturbed lipids between pre- and post-irradiation of human plasma samples after total body irradiation (TBI) and explore potential radiation biomarkers for early radiation classification. METHODS: Plasma samples were collected before and after irradiation from 22 hospitalized cases of acute myeloid leukemia (AML) prepared for bone marrow transplantation. Acute total-body γ irradiation was performed at doses of 0, 4, 8, and 12 Gy. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) with multiple reaction monitoring (MRM) method was utilized. Self-paired studies before and after irradiation were performed to screen potential lipid categorization markers and markers of dose-response relationships for radiation perturbation in humans. Based on the screened potential markers, a human TBI dose estimation model was developed. RESULTS: In total, 426 individual lipids from 14 major classes were quantified and 152 potential biomarkers with categorical characteristics were screened. A total of 80 lipids (32 TGs, 29 SMs, 9 FAs, 5 CEs, 5 PIs) were upregulated at 4 Gy, and a total of 91 lipids (39 SMs, 18 TGs, 15 HexCers, 7 CEs, 6 Cers, 3 LacCers, 2 LPEs, 1 PI) were upregulated at 12 Gy. Comparison of the ROC curves between the non-exposed and exposed groups at different doses showed AUC values ranging from 0.807 to 0.876. The metabolic pathways of potential lipid markers are mainly sphingolipid and glycerolipid metabolism, unsaturated fatty acid biosynthesis, fatty acid degradation and biosynthesis. Among the 13 dose-dependent radiosensitive lipids, CE (20:5), CE (18:1) and PI (18:2/18:2) were gradually incorporated into the TBI dose estimation model. CONCLUSION: This study suggested that it was feasible to acquire quantitative lipid biomarker panels using targeted lipidomics platforms for rapid, high-throughput triage. Lipidomics strategies for radiation biodosimetry in humans were established with lipid biomarkers with good dose-response relationship.

3.
Foodborne Pathog Dis ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39052696

RESUMEN

Staphylococcus aureus (S. aureus) is a pathogen capable of causing severe diseases and exhibiting resistance to multiple antibiotics. However, there is a significant lack of comprehensive research on the global prevalence of its antibiotic resistance genes (ARGs). This study provided a comprehensive analysis of ARGs in S. aureus, using 113,842 S. aureus genome sequences from the National Center for Biotechnology Information database. The results revealed that a significant majority (84%) of these genomes harbored at least one ARG, with a total of 389,464 ARG sequences identified across 19 major types and 103 subtypes. These ARGs exhibited varied abundances and diversities, linked primarily to clinical cases worldwide. ARGs for fluoroquinolones, multidrug resistance, bacitracin, tetracyclines, beta-lactams, and aminoglycosides were notably abundant, ranging from 3.16 × 10-5 to 1.49 copies of ARG per million bp. Variations in the abundance and diversity of ARGs were observed between countries, with middle- and low-income countries showing higher gene abundance but lower diversity compared with high-income countries. Temporal analysis over 30 years showed a fluctuating decline in ARG abundance alongside an increase in diversity, suggesting evolving resistance mechanisms. The study also explored the role of mobile genetic elements in ARG dissemination, finding a substantial proportion of ARG subtypes associated with plasmids and insertion sequence elements, indicating their potential for spread across borders. The global distribution of mobile ARGs was further analyzed, revealing the extensive reach of certain ARGs across countries. This research provides valuable insights into the prevalence and dissemination of antibiotic resistance in S. aureus on a global scale, aiding in the development of effective monitoring and control strategies to combat ARGs in S. aureus and other pathogens.

4.
Cell Signal ; 116: 111060, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38242269

RESUMEN

The mammalian target of rapamycin complex1 (mTORC1) can response to amino acid to regulate metabolism and cell growth. GATOR2 act as important role in amino acid mediated mTORC1 signaling pathway by repressing GTPase activity (GAP) of GATOR1. However, it is still unclear how GATOR2 regulates mTORC1 signaling pathway. Here, we found that K63-ubiquitination of Sce13, one component of GATOR2, suppresses the mTORC1 activity by lessening the inter-interaction of GATOR2. Mechanistically, the ubiquitination of Sec13 was mediated by SPOP. Subsequently, the ubiquitination of Sec13 attenuated its interaction with the other component of GATOR2, thus suppressing the activity of mTORC1. Importantly, the deficiency of SPOP promoted the faster proliferation and migration of breast cancer cells, which was attenuated by knocking down of Sec13. Therefore, SPOP can act as a tumor suppressor gene by negatively regulating mTORC1 signaling pathway.


Asunto(s)
Aminoácidos , Serina-Treonina Quinasas TOR , Ciclo Celular , Proliferación Celular , Diana Mecanicista del Complejo 1 de la Rapamicina
5.
Front Public Health ; 11: 1247141, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38089031

RESUMEN

Introduction: This study aimed to develop and assess a deep-learning model based on CT images for distinguishing infectivity in patients with pulmonary tuberculosis (PTB). Methods: We labeled all 925 patients from four centers with weak and strong infectivity based on multiple sputum smears within a month for our deep-learning model named TBINet's training. We compared TBINet's performance in identifying infectious patients to that of the conventional 3D ResNet model. For model explainability, we used gradient-weighted class activation mapping (Grad-CAM) technology to identify the site of lesion activation in the CT images. Results: The TBINet model demonstrated superior performance with an area under the curve (AUC) of 0.819 and 0.753 on the validation and external test sets, respectively, compared to existing deep learning methods. Furthermore, using Grad-CAM, we observed that CT images with higher levels of consolidation, voids, upper lobe involvement, and enlarged lymph nodes were more likely to come from patients with highly infectious forms of PTB. Conclusion: Our study proves the feasibility of using CT images to identify the infectivity of PTB patients based on the deep learning method.


Asunto(s)
Aprendizaje Profundo , Tuberculosis Pulmonar , Humanos , Tuberculosis Pulmonar/diagnóstico por imagen , Pacientes , Tecnología
6.
Nat Plants ; 9(11): 1832-1847, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37845337

RESUMEN

Base editors (BEs) empower the efficient installation of beneficial or corrective point mutations in crop and human genomes. However, conventional BEs can induce unpredictable guide RNA (gRNA)-independent off-target edits in the genome and transcriptome due to spurious activities of BE-enclosing deaminases, and current improvements mostly rely on deaminase-specific mutagenesis or exogenous regulators. Here we developed a split deaminase for safe editing (SAFE) system applicable to BEs containing distinct cytidine or adenosine deaminases, with no need of external regulators. In SAFE, a BE was properly split at a deaminase domain embedded inside a Cas9 nickase, simultaneously fragmenting and deactivating both the deaminase and the Cas9 nickase. The gRNA-conditioned BE reassembly conferred robust on-target editing in plant, human and yeast cells, while minimizing both gRNA-independent and gRNA-dependent off-target DNA/RNA edits. SAFE also substantially increased product purity by eliminating indels. Altogether, SAFE provides a generalizable solution for BEs to suppress off-target editing and improve on-target performance.


Asunto(s)
Ácidos Alcanesulfónicos , Edición Génica , ARN Guía de Sistemas CRISPR-Cas , Humanos , ARN , Desoxirribonucleasa I/genética , Sistemas CRISPR-Cas
7.
Funct Plant Biol ; 50(9): 724-735, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37544656

RESUMEN

The effects of sulfate on the zinc (Zn) bioaccumulation characteristics and photophysiological mechanisms of the ornamental plant Hydrocotyle vulgaris were explored using a hydroponic culture under three Zn concentrations (300, 500 and 700mgL-1 ) with (400µmolL-1 ) or without the addition of sulfate. Results showed that: (1) tissue Zn concentrations and total Zn contents increased with increasing hydroponic culture Zn concentrations; and sulfate addition decreased Zn uptake and translocation from roots to shoots; (2) Zn exposure decreased photosynthetic pigment synthesis, while sulfate changed this phenomenon, especially for chlorophyll a under 300mgL-1 Zn treatment; (3) Zn exposure decreased photosynthetic function, while sulfate had positive effects, especially on the photosynthetic rate (Pn ) and stomatal conductance (Gs ); and (4) chlorophyll fluorescence parameters related to light energy capture, transfer and assimilation were generally downregulated under Zn stress, while sulfate had a positive effect on these processes. Furthermore, compared to photosynthetic pigment synthesis and photosynthesis, chlorophyll fluorescence was more responsive, especially under 300mgL-1 Zn treatment with sulfate addition. In general, Zn stress affected photophysiological processes at different levels, while sulfate decreased Zn uptake, translocation, and bioaccumulation and showed a positive function in alleviating Zn stress, ultimately resulting in plant growth promotion. All of these results provide a theoretical reference for combining H. vulgaris with sulfate application in the bioremediation of Zn-contaminated environments at the photophysiological level.


Asunto(s)
Centella , Zinc , Zinc/farmacología , Clorofila , Clorofila A/farmacología , Sulfatos/farmacología , Hojas de la Planta , Fotosíntesis
8.
Colloids Surf B Biointerfaces ; 227: 113348, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37201449

RESUMEN

Extracellular polymeric substances (EPSs) are macromolecular polymers formed by metabolic secretion, and they have great potential for removing heavy metal (HM) ions from the aquatic phase. In this study, the contributions of soluble EPSs (S-EPSs), loosely bound EPSs (LB-EPSs) and tightly bound EPSs (TB-EPSs) secreted by Enterobacter sp. to Cd2+ and Pb2+ adsorption were analyzed. The results indicated that in a solution containing both Cd2+ and Pb2+, pH= 6.0 was best suited for the adsorption process, and adsorption equilibrium was reached in approximately 120 min. Moreover, the mechanism for adsorption of Cd2+ and Pb2+ by the different layers of EPSs involved spontaneous chemical processes. However, Cd2+ adsorption by the three layers of the EPSs was an exothermic process (∆H0 <0), but Pb2+ adsorption by the three layers of the EPSs was an endothermic process (∆H0 >0). The variations in zeta potentials indicated that ion exchange occurred during Cd2+ and Pb2+ adsorption. FT-IR, XPS and 3D-EEM analyses indicated that the functional groups of the EPSs involved in adsorption were mainly the CO, C-O and C-O-C groups of the polysaccharides; furthermore, fulvic acid-like substances, humic-like substances and tyrosine-like proteins played important roles in the adsorption of Cd2+ and Pb2+ by the different EPS layers.


Asunto(s)
Cadmio , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Matriz Extracelular de Sustancias Poliméricas , Plomo , Enterobacter , Espectroscopía Infrarroja por Transformada de Fourier , Adsorción
9.
Front Pharmacol ; 14: 1164309, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37168999

RESUMEN

Aim: To analyze the safety of immune checkpoint inhibitors in primary liver cancer patients and to identify the risk factors for immune-related adverse events (irAEs). Methods: The study enrolled 106 patients with primary liver cancer, including 81 with hepatocellular carcinoma and 25 with intrahepatic cholangiocarcinoma. We analyzed the differences between groups in irAE occurrence, including those with and without targeted drugs and those who received interventional therapy. Results: The incidence of irAEs was 39%, with thyroid function, liver function, and skin events being the most common. There was no correlation among irAE incidence and the liver cancer type, stage, or severity; grade of Child-Pugh score; and Barcelona Clinical Liver Cancer classification. However, being overweight was a significant risk factor for irAEs, correlating with high body mass index. The combination of targeted drugs and/or transcatheter arterial chemoembolization therapy did not increase the incidence of irAEs. Conclusion: Being overweight is a potential risk factor for irAEs in primary liver cancer patients. However, there is no correlation between irAE incidence and the liver cancer type, stage, or severity or a combination of targeted drugs or transarterial chemoembolization therapy.

10.
Ecotoxicol Environ Saf ; 254: 114764, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36907097

RESUMEN

A field study was conducted to compare FM-1 inoculation by irrigation and spraying for promoting Bidens pilosa L. phytoremediation of cadmium (Cd)-contaminated soil. Cascading relationships between bacterial inoculation by irrigation and spraying and soil properties, plant growth-promoting traits, plant biomass and Cd concentrations in Bidens pilosa L. were explored based on the partial least squares path model (PLS-PM). The results indicated that inoculation with FM-1 not only improved the rhizosphere soil environment of B. pilosa L. but also increased the Cd extracted from the soil. Moreover, Fe and P in leaves play vital roles in promoting plant growth when FM-1 is inoculated by irrigation, while Fe in leaves and stems plays a vital role in promoting plant growth when FM-1 is inoculated by spraying. In addition, FM-1 inoculation decreased the soil pH by affecting soil dehydrogenase and oxalic acid in cases with irrigation and Fe in roots in cases with spraying. Thus, the soil bioavailable Cd content increased and promoted Cd uptake by Bidens pilosa L. To address Cd-induced oxidative stress, Fe in leaves helped to convert GSH into PCs, which played a vital role in ROS scavenging when FM-1 was inoculated by irrigation. The soil urease content effectively increased the POD and APX activities in the leaves of Bidens pilosa L., which helped alleviate Cd-induced oxidative stress when FM-1 was inoculated by spraying. This study compares and illustrates the potential mechanism by which FM-1 inoculation can improve the phytoremediation of Cd-contaminated soil by Bidens pilosa L., suggesting that FM-1 inoculation by irrigation and spraying is useful in the phytoremediation of Cd-contaminated sites.


Asunto(s)
Bidens , Contaminantes del Suelo , Cadmio/análisis , Biodegradación Ambiental , Contaminantes del Suelo/análisis , Suelo/química , Raíces de Plantas
11.
Front Oncol ; 13: 1109980, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36998463

RESUMEN

Background: The clinical characteristics of primary liver cancer (PLC) patients are changing, maybe due to hepatitis viral vaccination and lifestyle changes, etc. The linkage between these changes and outcomes among these PLCs has not yet been fully elucidated. Methods: It was identified total of 1691 PLC cases diagnosed between 2000 ~ 2020. Cox proportional hazards models were utilized to determine the connections between the clinical presentations and their close risk factor(s) from PLC patients. Results: The average age of PLC patients increased gradually from 52.74 ± 0.5 years in 2000 ~ 2004 to 58.63 ± 0.44 years in 2017 ~ 2020, accompanied by an increased proportion of females from 11.11% to 22.46%, and non-viral hepatitis-related PLC was raised from 1.5% to 22.35%. 840 (49.67%) PLC patients with alpha-fetoprotein (AFP) < 20ng/mL (AFP-negative). The mortality was 285 (16.85%) or 532 (31.46%) PLC patients with alanine transaminase (ALT) between 40 ~ 60 IU/L or ALT > 60 IU/L. The PLC patients with pre-diabetes/diabetes or dyslipidemia also increased from 4.29% or 11.1% in 2000 ~ 2004 to 22.34% or 46.83% in 2017 ~ 2020. The survival period of the PLC patients with normoglycemia or normolipidemic was 2.18 or 3.14 folds longer than those patients with pre-diabetes/diabetes or hyperlipidemia (P<0.05). Conclusions: It was gradually increased that age, the proportion of females, non-viral hepatitis-related causes, AFP-negative, and abnormal glucose/lipids among PLC patients. Proper control of glucose/lipids or ALT may improve the prognosis of PLCs.

12.
Analyst ; 148(4): 888-897, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36661109

RESUMEN

Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) has become a powerful method for studying the spatial distribution of molecules. Preparation of tissue sections is a critical step for obtaining high-quality imaging data. The thickness of the slice of tissue affects the feature quality of MALDI MSI. However, few studies involved in-depth and systematic examination of slice thickness. Herein, we investigate the effect of tissue slice thickness on MALDI MSI detection. We found that the thicker the slice, the worse the results obtained by MALDI MS, which we attributed to the charging effect. The optimal slice thickness of brain tissue obtained in this work is 2-6 µm. Comparisons of the effects of slice thickness on atmospheric pressure and vacuum MALDI assays indicated that the ion signals and imaging quality of vacuum MALDI were more seriously affected by the thickness, with atmospheric pressure (AP) MALDI having a greater tolerance for slice thickness than vacuum MALDI. The MALDI MSI of peptides after enzymatic digestion of tissue sections of different thicknesses was also studied, revealing that the most suitable tissue thickness for enzyme digestion is about 10 µm. Finally, we optimized the slice thicknesses of six tissues in mice to provide a reference for MALDI MSI studies. It is worth mentioning that in our study the values of slice thickness range from the nanometer level (400 nm) at the minimum to 150 µm at the maximum, values which were unprecedented. Detailed in-depth and systematic studies of slice thickness will promote the development of sample preparation technology of AP and vacuum MALDI MSI, which will provide important references for the selection of tissue section thickness.


Asunto(s)
Péptidos , Proteínas , Ratones , Animales , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Péptidos/análisis , Diagnóstico por Imagen , Encéfalo
13.
Environ Sci Pollut Res Int ; 30(14): 41766-41781, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36637652

RESUMEN

In the present study, a modified silicon adsorbent (MDSA) was used as a passivator, and we explored the mechanism by which the MDSA helps B. pilosa L. alleviate Cd-induced oxidative stress and its effect on the rhizosphere microbial community. Therefore, a field study was conducted, and MDSA was applied at four levels (control (0 mg m-2), A1 (100 mg m-2), A2 (200 mg m-2), and A3 (400 mg m-2)). The application of MDSA significantly increased the soil pH and decreased the acid-soluble Cd content, which decreased by 30.3% with A3 addition. The addition of MDSA increased the relative abundance of Sordariomycetes due to the increased invertase activity and total nitrogen (TN) and total phosphorus (TP) contents, and the increased soil pH led to increased relative abundances of Alphaproteobacteria and Thermoleophilia. Meanwhile, MDSA addition significantly decreased the Cd concentrations in leaves and stems, which decreased by 19.7 to 39.5% in stems and 24.6 to 43.2% in leaves. All MDSA additions significantly decreased the translocation factor (TF) values of Cd, which decreased by 30.5% (A1), 50.9% (A2), and 52.7% (A3). Moreover, peroxidase (POD) from the antioxidant enzyme system and glutathione (GSH) from the nonenzymatic system played vital roles in scavenging reactive oxygen intermediates (ROIs) such as H2O2 and ⋅O2- in leaves, thereby helping B. pilosa L. alleviate Cd-induced oxidative stress and promote plant growth. Hence, our study indicated that MDSA application improved the rhizosphere soil environment, reconstructed the soil microbial community, helped B. pilosa L. alleviate Cd-induced oxidative stress, and promoted plant growth.


Asunto(s)
Bidens , Contaminantes del Suelo , Cadmio/análisis , Suelo/química , Peróxido de Hidrógeno/farmacología , Estrés Oxidativo , Glutatión/farmacología , Contaminantes del Suelo/análisis , Raíces de Plantas
14.
J Environ Manage ; 330: 117227, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36623389

RESUMEN

In the present study, CaFe-layered double hydroxide corn straw biochar (CaFe-LDH@CSB) was applied to the rhizosphere soil of both pakchoi (Brassica campestris L. ssp. Chinensis Makino, B. campestris L.) and water spinach (Ipomoea aquatic F., I. aquatic F.) to explore and clarify the potential mechanism by which CaFe-LDH@CSB helps vegetables reduce heavy metal (HM) uptake and alleviate oxidative stress. Pot experiments were conducted with CaFe-LDH@CSB applied at four levels: control (CK), T1 (5 g kg-1), T2 (10 g kg-1) and T3 (20 g kg-1). The results indicated that the application of CaFe-LDH@CSB significantly increased pH and decreased the acid-soluble forms of Cd, Pb, Zn and Cu in the rhizosphere soil of both B. campestris L. and I. aquatic F.; decreases of 39.4%, 18.0%, 10.0% and 33.3% in B. campestris L. and of 26.6%, 49.1%, 13.2% and 36.8% in I. aquatic F., respectively, were observed at the T3 level. Moreover, CaFe-LDH@CSB application reduced HM uptake by B. campestris L. and decreased HM-induced oxidative stress through the regulation of soil physicochemical properties and microbial abundance. For B. campestris L., variations in Sordariomycetes helped alleviate the accumulation of HMs in the aerial part, while GSH and -SH from the nonenzymatic system played an important role in scavenging H2O2 in leaves, thus helping B. campestris L. alleviate HM-induced oxidative stress. For I. aquatica F., variations in Vicinamibacteria and Mortierellomycetes helped alleviate the accumulation of HMs in plants, while GSH and PCs from nonenzymatic systems played an important role in removing ·O2- in leaves, thereby helping I. aquatica F. alleviate HM-induced oxidation stress. Our study indicated that the application of CaFe-LDH@CSB improved the rhizosphere soil environment and rebuilt the soil microbial community, helping B. campestris L. and I. aquatica F. alleviate HM-induced oxidative stress and promoting the growth of both vegetables.


Asunto(s)
Brassica , Ipomoea , Metales Pesados , Contaminantes del Suelo , Brassica/química , Zea mays , Cadmio/farmacología , Rizosfera , Peróxido de Hidrógeno , Metales Pesados/análisis , Estrés Oxidativo , Suelo/química , Verduras , Contaminantes del Suelo/análisis
15.
Funct Plant Biol ; 50(3): 242-255, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36536492

RESUMEN

Manganese (Mn) plays an essential role in plant growth; however, excessive Mn is toxic to plants. Polygonum lapathifolium Linn. was tested as a novel Mn-hyperaccumulating species in our previous study, but the underlying mechanisms of this hyperaccumulation are poorly understood. A hydroponic experiment with (8mmolL-1 ) and without additional Mn (CK) was established to explore the possible mechanisms through the effects on photosynthesis-related physiological characteristics and metabolomics. The results showed that additional Mn increased plant biomass, photosynthesis, and stomatal conductance related to increases in the effective photochemical quantum yield of photosystem II and relative electron transport rate (P <0.05). The results from liquid chromatography-mass spectrometry revealed 56 metabolites differentially accumulated between the plants composing these two groups. Metabolites were enriched in 20 metabolic pathways at three levels (environmental information processing, genetic information processing, and metabolism), of which five metabolic pathways were associated with significant or extremely significant changes (P <0.05). These five enriched pathways were ABC transporters (environmental information processing), aminoacyl-tRNA biosynthesis (genetic information processing), biosynthesis of amino acids , d -arginine and d -ornithine metabolism , and arginine biosynthesis (metabolism). Flavonoids may play a key role in Mn tolerance, as they accumulated more than 490-fold, and the relationship between flavonoids and Mn tolerance needs to be studied in the future.


Asunto(s)
Manganeso , Polygonum , Manganeso/análisis , Manganeso/metabolismo , Manganeso/toxicidad , Polygonum/química , Polygonum/metabolismo , Fotosíntesis , Transporte de Electrón , Plantas/metabolismo
16.
Int J Phytoremediation ; 25(8): 1052-1066, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36469579

RESUMEN

Herein, 7,308 relevant documents on biochar application for the remediation of heavy metal (HM)-contaminated soil (BARHMCS) from 1991 to 2020 were extracted from the Web of Science Core Collection and subjected to bibliometric and knowledge mapping analyses to provide a global perspective. The results showed that (1) the number of publications increased over time and could be divided into two subperiods, i.e., the slow growth period (SGP) and rapid growth period (RGP), according to whether the annual publication number was ≥300. (2) A total of 126 countries, 741 institutions, and 1,021 scholars have contributed to this field. (3) These studies are mainly published in Science of the Total Environment, Chemosphere, etc., and are mainly based on the categories of environmental science, soil science, and environmental engineering. (4) The top five keyword clusters for the SGP were biochar, biochar, sorption, charcoal, and HMs, and those for the RGP were adsorption, black carbon, nitrous oxide, cadmium, and pyrolysis. (5) The main knowledge domains and the most cited references during the SGP and RGP were discussed. (6) Future directions are related to biochar application for plant remediation, the mitigation of climate change through increased carbon sequestration, biochar modification, and biochar for HMs and multiple organic pollutants.


Biochar application in the remediation of heavy metal-contaminated soil (BARHMCS) has become a popular research topic worldwide. Many excellent papers on this topic have been published, including some valuable reviews. However, there are no reviews including bibliometric and visual analyses. In the present study, bibliometric and visual analyses of relevant literature in the field of BARHMCS based on the Web of Science Core Collection were carried out to outline the development process of this field at a macro level, clarify the research hotspots, identify the knowledge domains that support this field, and explore future research directions. These efforts will no doubt help readers fully understand BARHMCS from a global perspective and provide a reference for future research. HIGHLIGHTSAn overall global perspective of biochar remediation of heavy metal (HM)-contaminated soil was provided.The main popular research topics of each period were discussed.Knowledge domains were discussed.Five main future research directions were identified based on burst keyword analysis.Biochar modification and its effect on HMs and coexisting organic pollutants should be studied in the future for soil remediation purposes.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Carbón Orgánico , Suelo , Biodegradación Ambiental , Contaminantes del Suelo/análisis , Metales Pesados/análisis , Bibliometría
17.
Chemosphere ; 313: 137467, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36481172

RESUMEN

Biochar is an emerging eco-friendly and high-efficiency heavy metal (HM) adsorbent that exhibits satisfactory HM remediation effects in both water and soil environments. However, few studies have investigated the mechanisms and application of biochar in the remediation of combined HM-contaminated environments. Therefore, in the present study, a novel corn straw biochar-loaded calcium-iron layered double hydroxide composite (CaFe-LDH@CSB) was synthesized via the coprecipitation method and applied as a remediation adsorbent to remove HMs in both water and soil environments. The results indicated that the HM adsorption mechanism of CaFe-LDH@CSB in the aquatic phase involved a chemical endothermic adsorption process of functional group-complexed monolayers, dominated by precipitation, ion exchange, complexation and π bond interactions. The maximum adsorption capacity for Cd(II), Pb(II), Zn(II) and Cu(II) in the aqueous phase reached 24.58, 240.96, 57.57 and 39.35 mg g-1, respectively. In addition, application of CaFe-LDH@CSB in the combined HM-contaminated soil treatment helped to increase the soil pH, which increased by 5.1-17.9% in low-contamination (LC) soil and by 7.0-13.9% in high-contamination (HC) soil. Moreover, application of CaFe-LDH@CSB effectively decreased the acid-soluble fraction of HMs and increased the HM residual fraction. The immobilization mechanism of CaFe-LDH@CSB in the soil was concluded to involve pore filling, functional group action and electrostatic interactions. Overall, this study provided a novel LDH biochar composite that can be effectively applied in the remediation of combined HM-contaminated water and soil environments.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Zea mays , Adsorción , Metales Pesados/química , Carbón Orgánico/química , Hidróxidos , Suelo/química , Agua , Contaminantes del Suelo/análisis , Cadmio
18.
Int J Phytoremediation ; 25(4): 524-537, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35790485

RESUMEN

A hydroponic method was conducted to test whether Spathiphyllum kochii is tolerant to multiple HMs as well as to evaluate whether sodium silicate promotes plant growth and alleviates HM stress mainly by assessing biomass, HM accumulation characteristics and antioxidant enzyme activities (AEAs). Three soil extractions from an uncontaminated soil, a comparable lightly HM-contaminated soil (EnSE), and a comparable heavily HM-contaminated soil (ExSE) with or without 1 mM sodium silicate supplementation were used. S. kochii showed no obvious symptoms when cultured in EnSE and ExSE, indicating that it was a multi-HM-tolerant species. The biomass and photosynthesis followed the order: UnSE > EnSE > ExSE, but the opposite order was found for HM concentration, AEAs, and malondialdehyde content. Silicate had no effects on the growth and HM bioaccumulation characteristics of S. kochii cultured in UnSE but exhibited a novel role in decreasing HM uptake by 13.61-41.51% in EnSE and ExSE, respectively, corresponding upregulated AEAs, and reduced malondialdehyde contents, resulting in increased biomass and alleviating HM stress. The activities of peroxidase and superoxide dismutase were upregulated by an increase in soil extraction HM concentration and further upregulated by silicate supplementation, indicating that they were important mechanisms alleviating HM stress in S. kochii.


Phytoremediation is an economical and environmentally friendly technology for the alleviation of heavy metal (HM)-contaminated soil. Improving bioremediation efficiency is crucial for this kind of technology. Many studies have shown that silicon plays a novel role in plant growth and adversity responses, but studies in the field of phytoremediation are limited. In addition, phytoremediation plant species are usually hyperaccumulators or may be tolerant crops, commercial crops, or wild species from mining areas, and the use of landscape species in phytoremediation is limited. This is the first report on the effects of silicate on the multi-HM bioaccumulation characteristics of a garden plant (Spathiphyllum kochii) cultured in uncontaminated and HM-contaminated soil extractions. This study will broaden phytoremediation species screening and enrich our understanding of the mechanisms by which Si supports the bioremediation of HM-contaminated environments.HIGHLIGHTSS. kochii was a multi-heavy metal-tolerant species.Silicon played a novel role in reducing heavy metal concentrations by 14­40% and 14­42% in shoots and roots, respectively.Silicon upregulated antioxidant enzyme activities to alleviate heavy metal stress in plants.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Metales Pesados/análisis , Suelo , Biodegradación Ambiental , Contaminantes del Suelo/análisis , Silicatos , Suplementos Dietéticos
19.
Clin Exp Med ; 23(2): 397-409, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35347503

RESUMEN

IL-34 involves in host immunity regulated carcinogenesis. Alpha-fetoprotein (AFP) is related to the development of HCC. We explored if combination of IL-34 and APF could improve the diagnostic value in HBV related hepatocellular carcinoma (HBV-HCC). Serum was obtained from HBV patients or healthy control. Liver tissue was obtained from liver biopsy in CHB, HBV related cirrhosis patients or curative resection in HBV-HCC patients. Serum IL-34 and MCSF, or intrahepatic IL-34, MCSF and CD68+ tumor associate macrophages (TAMs) were determined using ELISA or immunohistochemistry. Serum IL-34 was 1.7, 1.3 or 2.3-fold higher in HBV-HCC than that of CHB, HBV related cirrhosis or healthy control, which was inhibited following trans-hepatic arterial chemoembolization (TACE) in HBV-HCC patients. Intra-hepatic IL-34 was higher in HBV-HCC than that of the other three groups. Intra-hepatic IL-34 was associated with high HBV-DNA, HBeAg-, poor differentiation and small tumor size of HBV-HCC patients. Intra-hepatic TAMs in HBV-HCC were increased 1.7 or 1.3-fold, compared to that from CHB or HBV-cirrhosis patients. Intra-hepatic TAMs were associated with high HBV-DNA, high tumor differentiation, small tumor size, abnormal AFP and more tumor number. AFP plus serum IL-34, showed the highest AUC (0.837) with sensitivity (0.632) and highest specificity (0.931), suggesting that AFP plus IL-34 enhances the reliability for prediction of the development of HBV-HCC among CHB patients. Circulating and intra-hepatic IL-34 was upregulated gradually in HBV disease progression from CHB, cirrhosis and HCC. IL-34 may be used as a diagnostic biomarker and potential therapeutic target for the management of HBV-HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , alfa-Fetoproteínas/análisis , Neoplasias Hepáticas/patología , Virus de la Hepatitis B , ADN Viral , Reproducibilidad de los Resultados , Biomarcadores de Tumor , Cirrosis Hepática
20.
J Environ Manage ; 326(Pt A): 116641, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36343494

RESUMEN

Ammonia oxidizers (ammonia-oxidizing bacteria (AOB amoA) and ammonia-oxidizing archaea (AOA amoA)) and denitrifiers (encoded by nirS, nirK and nosZ) in the soil nitrogen cycle exist in a variety of natural ecosystems. However, little is known about the contribution of these five N-related functional genes to nitrification and denitrification in the soil profile in severely ecologically degraded areas. Therefore, in the present study, the abundance, diversity and community composition of AOA, AOB, nirS, nirK and nosZ were investigated in the soil profiles of different ecologically degraded areas in the Siding mine. The results indicated that, at the phylum level, the dominant archaea were Crenarchaeota and Thaumarchaeota and the dominant bacteria were Proteobacteria. Heavy metal contents had a great impact on AOA amoA, nirS and nirK gene abundances. AOA amoA contributed more during the ammonia oxidation process and was better adapted for survival in heavy metal-contaminated environments. In addition to heavy metals, the soil organic matter (SOM) content and C/N ratio had strong effects on the AOA and AOB community diversity and structure. In addition, variations in the net ammonification and nitrification rates were proportional to AOA amoA abundance along the soil profile. The soil C/N ratio, soil available phosphorus content and soil moisture influenced the denitrification process. Both soil available phosphorus and moisture were more strongly related to nosZ than to nirS and nirK. In addition, nosZ presented a higher correlation with the nosZ/(nirS + nirK) ratio. Moreover, nosZ/(nirS + nirK) was the key functional gene group that drove the major processes for NH4+-N and NO3--N transformation. This study demonstrated the role and importance of soil property impacts on N-related microbes in the soil profile and provided a better understanding of the role and importance of N-related functional genes and their contribution to soil nitrification and denitrification processes in highly degraded areas in the Siding mine.


Asunto(s)
Microbiota , Suelo , Suelo/química , Amoníaco/metabolismo , Microbiología del Suelo , Archaea/genética , Archaea/metabolismo , Nitrificación , Oxidación-Reducción , Fósforo/metabolismo , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA