Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 29(8): 2203-2226, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36607175

RESUMEN

Although soil ecological stoichiometry is constrained in natural ecosystems, its responses to anthropogenic perturbations are largely unknown. Inputs of inorganic fertilizer and crop residue are key cropland anthropogenic managements, with potential to alter their soil ecological stoichiometry. We conducted a global synthesis of 682 data pairs to quantify the responses of soil carbon (C), nitrogen (N), and phosphorus (P) and grain yields to combined inputs of crop residue plus inorganic fertilizer compared with only inorganic fertilizer application. Crop residue inputs enhance soil C (10.5%-12%), N (7.63%-9.2%), and P (2.62%-5.13%) contents, with an increase in C:N (2.51%-3.42%) and C:P (7.27%-8.00%) ratios, and grain yields (6.12%-8.64%), indicating that crop residue alleviated soil C limitation caused by inorganic fertilizer inputs alone and was able to sustain balanced stoichiometry. Moreover, the increase in soil C and C:N(P) ratio reached saturation in ~13-16 years after crop residue return, while grain yield increase trend discontinued. Furthermore, we identified that the increased C, N, and P contents and C:N(P) ratios were regulated by the initial pH and C content, and the increase in grain yield was not only related to soil properties, but also negatively related to the amount of inorganic N fertilizer input to a greater extent. Given that crop residual improvement varies with soil properties and N input levels, we propose a predictive model to preliminary evaluate the potential for crop residual improvement. Particularly, we suggest that part of the global budget should be used to subsidize crop residue input management strategies, achieving to a win-win situation for agricultural production, ecological protection, and climate change mitigation.


Asunto(s)
Fertilizantes , Suelo , Suelo/química , Ecosistema , Agricultura , Nitrógeno/análisis , Carbono
2.
Sensors (Basel) ; 19(10)2019 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-31137570

RESUMEN

In the remote sensing community, accurate image registration is the prerequisite of the subsequent application of remote sensing images. Phase correlation based image registration has drawn extensive attention due to its high accuracy and high efficiency. However, when the Discrete Fourier Transform (DFT) of an image is computed, the image is implicitly assumed to be periodic. In practical application, it is impossible to meet the periodic condition that opposite borders of an image are alike, and image always shows strong discontinuities across the frame border. The discontinuities cause a severe artifact in the Fourier Transform, namely the known cross structure composed of high energy coefficients along the axes. Here, this phenomenon was referred to as effect of image border. Even worse, the effect of image border corrupted its registration accuracy and success rate. Currently, the main solution is blurring out the border of the image by weighting window function on the reference and sensed image. However, the approach also inevitably filters out non-border information of an image. The existing understanding is that the design of window function should filter as little information as possible, which can improve the registration success rate and accuracy of methods based on phase correlation. In this paper, another approach of eliminating the effect of image border is proposed, namely decomposing the image into two images: one being the periodic image and the other the smooth image. Replacing the original image by the periodic one does not suffer from the effect on the image border when applying Fourier Transform. The smooth image is analogous to an error image, which has little information except at the border. Extensive experiments were carried out and showed that the novel algorithm of eliminating the image border can improve the success rate and accuracy of phase correlation based image registration in some certain cases. Additionally, we obtained a new understanding of the role of window function in eliminating the effect of image border, which is helpful for researchers to select the optimal method of eliminating the effect of image border to improve the registration success rate and accuracy.

3.
Sensors (Basel) ; 18(9)2018 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-30235885

RESUMEN

Soil spectra are often measured in the laboratory, and there is an increasing number of large-scale soil spectral libraries establishing across the world. However, calibration models developed from soil libraries are difficult to apply to spectral data acquired from the field or space. Transfer learning has the potential to bridge the gap and make the calibration model transferrable from one sensor to another. The objective of this study is to explore the potential of transfer learning for soil spectroscopy and its performance on soil clay content estimation using hyperspectral data. First, a one-dimensional convolutional neural network (1D-CNN) is used on Land Use/Land Cover Area Frame Survey (LUCAS) mineral soils. To evaluate whether the pre-trained 1D-CNN model was transferrable, LUCAS organic soils were used to fine-tune and validate the model. The fine-tuned model achieved a good accuracy (coefficient of determination (R²) = 0.756, root-mean-square error (RMSE)= 7.07 and ratio of percent deviation (RPD) = 2.26) for the estimation of clay content. Spectral index, as suggested as a simple transferrable feature, was also explored on LUCAS data, but did not performed well on the estimation of clay content. Then, the pre-trained 1D-CNN model was further fine-tuned by field samples collect in the study area with spectra extracted from HyMap imagery, achieved an accuracy of R² = 0.601, RMSE = 8.62 and RPD = 1.54. Finally, the soil clay map was generated with the fine-tuned 1D-CNN model and hyperspectral data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...