Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 154
2.
Cell Signal ; 120: 111194, 2024 Apr 27.
Article En | MEDLINE | ID: mdl-38685520

Inositol Polyphosphate-5-Phosphatase J (INPP5J), a 5-phosphatase, has been identified as a tumor suppressor in several types of cancer. However, its role in pancreatic cancer (PC) is unknown. We found that the INPP5J expression was markedly lower in PC tissues (n = 50) compared to paired adjacent non-tumor tissues, and the lower INPP5J expression was relevant to a worse prognosis of PC patients. We thus proposed that INPP5J might inhibit PC progression and conducted gain-of- and loss-of-function experiments to test our hypothesis. Our results showed that overexpression of INPP5J inhibited cell proliferation, invasion, migration, and xenografted tumor of PC cells. INPP5J silencing showed the opposite effect. Pellino E3 Ubiquitin Protein Ligase 1 (PELI1) is one of the ubiquitin ligases known to promote ubiquitination of its downstream targets. We found that PELI1 could interact with INPP5J and promote the ubiquitination and degradation of INPP5J. PELI1 overexpression enhanced malignant behaviors of PC cells. However, INPP5J overexpression restored the alterations caused by PELI1 overexpression. In conclusion, the results suggest that the decreased INPP5J expression, caused by PELI1 through ubiquitination, may promote PC progression. The PELI1-INPP5J axis represents a potential therapeutic targetable node for PC.

3.
Carbohydr Polym ; 334: 122025, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38553224

Diabetic foot ulcers (DFUs) are one of the most serious and devastating complication of diabetes, manifesting as foot ulcers and impaired wound healing in patients with diabetes mellitus. To solve this problem, sulfated hyaluronic acid (SHA)/collagen-based nanofibrous biomimetic skins was developed and used to promote the diabetic wound healing and skin remodeling. First, SHA was successfully synthetized using chemical sulfation and incorporated into collagen (COL) matrix for preparing the SHA/COL hybrid nanofiber skins. The polyurethane (PU) was added into those hybrid scaffolds to make up the insufficient mechanical properties of SHA/COL nanofibers, the morphology, surface properties and degradation rate of hybrid nanofibers, as well as cell responses upon the nanofibrous scaffolds were studied to evaluate their potential for skin reconstruction. The results demonstrated that the SHA/COL, SHA/HA/COL hybrid nanofiber skins were stimulatory of cell behaviors, including a high proliferation rate and maintaining normal phenotypes of specific cells. Notably, SHA/COL and SHA/HA/COL hybrid nanofibers exhibited a significantly accelerated wound healing and a high skin remodeling effect in diabetic mice compared with the control group. Overall, SHA/COL-based hybrid scaffolds are promising candidates as biomimetic hybrid nanofiber skin for accelerating diabetic wound healing.


Diabetes Mellitus, Experimental , Nanofibers , Humans , Mice , Animals , Nanofibers/therapeutic use , Nanofibers/chemistry , Hyaluronic Acid/chemistry , Biomimetics/methods , Sulfates/pharmacology , Wound Healing , Collagen/chemistry , Tissue Scaffolds/chemistry
4.
J Med Chem ; 67(5): 3287-3306, 2024 Mar 14.
Article En | MEDLINE | ID: mdl-38431835

Transient receptor potential ankyrin 1 (TRPA1) is a nonselective calcium ion channel highly expressed in the primary sensory neurons, functioning as a polymodal sensor for exogenous and endogenous stimuli, and has been implicated in neuropathic pain and respiratory disease. Herein, we describe the optimization of potent, selective, and orally bioavailable TRPA1 small molecule antagonists with strong in vivo target engagement in rodent models. Several lead molecules in preclinical single- and short-term repeat-dose toxicity studies exhibited profound prolongation of coagulation parameters. Based on a thorough investigative toxicology and clinical pathology analysis, anticoagulation effects in vivo are hypothesized to be manifested by a metabolite─generated by aldehyde oxidase (AO)─possessing a similar pharmacophore to known anticoagulants (i.e., coumarins, indandiones). Further optimization to block AO-mediated metabolism yielded compounds that ameliorated coagulation effects in vivo, resulting in the discovery and advancement of clinical candidate GDC-6599, currently in Phase II clinical trials for respiratory indications.


Respiratory Tract Diseases , Transient Receptor Potential Channels , Humans , Transient Receptor Potential Channels/metabolism , TRPA1 Cation Channel , Aldehyde Oxidase/metabolism , Oxidoreductases/metabolism , Cytoskeletal Proteins/metabolism
5.
Pharmaceuticals (Basel) ; 17(2)2024 Jan 30.
Article En | MEDLINE | ID: mdl-38399394

Early stage chemical development presents numerous challenges, and achieving a functional balance is a major hurdle, with many early compounds not meeting the clinical requirements for advancement benchmarks due to issues like poor oral bioavailability. There is a need to develop strategies for achieving the desired systemic concentration for these compounds. This will enable further evaluation of the biological response upon a compound-target interaction, providing deeper insight into the postulated biological pathways. Our study elucidates alternative drug delivery paradigms by comparing formulation strategies across oral (PO), intraperitoneal (IP), subcutaneous (SC), and intravenous (IV) routes. While each modality boasts its own set of merits and constraints, it is the drug's formulation that crucially influences its pharmacokinetic (PK) trajectory and the maintenance of its therapeutic levels. Our examination of model compounds G7883 and G6893 highlighted their distinct physio-chemical attributes. By harnessing varied formulation methods, we sought to fine-tune their PK profiles. PK studies showcased G7883's extended half-life using an SC oil formulation, resulting in a 4.5-fold and 2.5-fold enhancement compared with the IP and PO routes, respectively. In contrast, with G6893, we achieved a prolonged systemic coverage time above the desired target concentration through a different approach using an IV infusion pump. These outcomes underscore the need for tailored formulation strategies, which are dictated by the compound's innate properties, to reach the optimal in vivo systemic concentrations. Prioritizing formulation and delivery optimization early on is pivotal for effective systemic uptake, thereby facilitating a deeper understanding of biological pathways and expediting the overall clinical drug development timeline.

6.
Cryobiology ; 114: 104834, 2024 Mar.
Article En | MEDLINE | ID: mdl-38065230

Maintaining appropriate intracellular calcium of oocytes is necessary to prevent ultrastructure and organelle damage caused by freezing and cryoprotectants. The present study aimed to investigate whether cryoprotectant-induced changes in the calcium concentrations of oocytes can be regulated to reduce damage to developmental potential and ultrastructure. A total of 33 mice and 1381 oocytes were used to explore the effects of intracellular calcium on the development and ultrastructures of oocytes subjected to 2-aminoethoxydiphenyl borate (2-APB) inhibition or thapsigargin (TG) stimulation. Results suggested that high levels intracellular calcium interfered with TG compromised oocyte survival (84.4 % vs. 93.4 %, p < 0.01) and blastocyst formation in fresh and cryopreservation oocytes (78.1 % vs. 86.4 %, and 60.5 % vs. 72.5 %, p < 0.05) compared with that of 2-APB pretreated oocytes in which Ca2+ was stabilized even though no differences in fertilization and cleavage was detected (p > 0.05). Examination by transmission electron microscopy indicated that the microvilli decreased and shortened, cortical granules considerably decreased in the cortex area, mitochondrial vesicles and vacuoles increased, and the proportion of vacuole mitochondria increased after oocytes were exposed to cryoprotectants. The cryopreservation-warming process deteriorated the negative effects on organelles of survival oocytes. By contrast, a low level of intracellular calcium mediated with 2-APB was supposed to contribute to the protection of organelles. These findings suggested oocyte injuries induced by cryoprotectants and low temperatures can be alleviated. More studies are necessary to confirm the relationship among Ca2+ concentration of the cytoplasm, ultrastructural injuries, and disrupted developmental potential in oocytes subjected to cryopreservation and warming.


Calcium , Cryopreservation , Animals , Mice , Cryopreservation/methods , Calcium/pharmacology , Oocytes , Freezing , Cryoprotective Agents/pharmacology
7.
Plant Cell Environ ; 47(2): 387-407, 2024 Feb.
Article En | MEDLINE | ID: mdl-38058262

The escalating impact of climate change and ultraviolet (UV) radiation is subjecting plants to unique combinations of UV-B and drought stress. These combined stressors could have additive, synergistic, or antagonistic effects, but the precise nature of these impacts remains uncertain, hampering our ability to predict plant adaptations approach towards stressors. Our analysis of various studies shows that UV-B or drought conditions detrimentally influence plant growth and health metrics by the enhanced generation of reactive oxygen species causing damage to lipids, proteins, carbohydrates and DNA. Further reducing biomass accumulation, plant height, photosynthetic efficiency, leaf area, and water transpiration, while enhancing stress-related symptoms. In response to UV-B radiation and drought stress, plants exhibit a notable up-regulation of specific acclimation-associated metabolites, including proline, flavonoids, anthocyanins, unsaturated fatty acids, and antioxidants. These metabolites play a pivotal role in conferring protection against environmental stresses. Their biosynthesis and functional roles are potentially modulated by signalling molecules such as hydrogen peroxide, abscisic acid, jasmonic acid, salicylic acid, and ethylene, all of which have associated genetic markers that further elucidate their involvement in stress response pathways. In comparison to single stress, the combination of UV-B and drought induces the plant defence responses and growth retardation which are less-than-additive. This sub-additive response, consistent across different study environments, suggests the possibility of a cross-resistance mechanism. Our outlines imply that the adverse effects of increased drought and UV-B could potentially be mitigated by cross-talk between UV-B and drought regimes utilizing a multidimensional approach. This crucial insight could contribute significantly to refining our understanding of stress tolerance in the face of ongoing global climate change.


Anthocyanins , Resilience, Psychological , Droughts , Plants/radiation effects , Stress, Physiological/genetics
8.
Emerg Microbes Infect ; 13(1): 2284294, 2024 Dec.
Article En | MEDLINE | ID: mdl-37966008

H5N1 avian influenza viruses bearing the clade 2.3.2.1 hemagglutinin (HA) gene have been widely detected in birds and poultry in several countries. During our routine surveillance, we isolated 28 H5N1 viruses between January 2017 and October 2020. To investigate the genetic relationship of the globally circulating H5N1 viruses and the biological properties of those detected in China, we performed a detailed phylogenic analysis of 274 representative H5N1 strains and analyzed the antigenic properties, receptor-binding preference, and virulence in mice of the H5N1 viruses isolated in China. The phylogenic analysis indicated that the HA genes of the 274 viruses belonged to six subclades, namely clades 2.3.2.1a to 2.3.2.1f; these viruses acquired gene mutations and underwent complicated reassortment to form 58 genotypes, with G43 being the dominant genotype detected in eight Asian and African countries. The 28 H5N1 viruses detected in this study carried the HA of clade 2.3.2.1c (two strains), 2.3.2.1d (three strains), or 2.3.2.1f (23 strains), and formed eight genotypes. These viruses were antigenically well-matched with the H5-Re12 vaccine strain used in China. Animal studies showed that the pathogenicity of the H5N1 viruses ranged from non-lethal to highly lethal in mice. Moreover, the viruses exclusively bound to avian-type receptors and have not acquired the ability to bind to human-type receptors. Our study reveals the overall picture of the evolution of clade 2.3.2.1 H5N1 viruses and provides insights into the control of these viruses.


Influenza A Virus, H5N1 Subtype , Influenza in Birds , Animals , Humans , Mice , Hemagglutinins/genetics , Birds , Poultry , Phylogeny , Chickens , Hemagglutinin Glycoproteins, Influenza Virus/chemistry
9.
Inflammation ; 47(1): 363-375, 2024 Feb.
Article En | MEDLINE | ID: mdl-37902841

Rheumatoid arthritis (RA) is an autoimmune disease characterized by a notably high disability rate, primarily attributed to cartilage and bone degradation. The involvement of heat shock protein 90 (HSP90) as a molecular chaperone in the inflammatory response of RA has been established, but its role in bone destruction remains uncertain. In the present study, the expression of HSP90 was augmented in osteoclasts induced by the receptor activator of nuclear factor-κB ligand. Additionaly, it was observed that the outcomes revealed a noteworthy inhibition of osteoclast formation and differentation when triptolide was utilized to hinder the expression of HSP90. Furthermore, the positive influence of HSP90 in osteoclast differentiation was substantiated by overexpressing HSP90 in osteoclast precursor cells. Mechanically, HSP90 significantly activated the TNF receptor-associated factor 6 (TRAF6)/Nuclear factor of activated T cells 1 (NFATc1) signaling axis, accompanied by markedly promoting osteoclast differentiation. This effect was consistently observed in the destructive joint of rats with collagen-induced arthritis, where HSP90 effectively activated osteoclasts and contributed to arthritic bone destruction by activating the TRAF6/NFATc1 signaling. Overall, the findings of this study provide compelling evidence that HSP90 exacerbates bone destruction in RA by promoting osteoclast differentiation through the activation of TRAF6/NFATc1 signaling, and interference with HSP90 may be a promising strategy for the discovery of anti-arthritic bone destruction agents.


Arthritis, Rheumatoid , Bone Resorption , Animals , Rats , Arthritis, Rheumatoid/metabolism , Bone Resorption/metabolism , Cell Differentiation , NFATC Transcription Factors/metabolism , NFATC Transcription Factors/pharmacology , Osteoclasts/metabolism , RANK Ligand , TNF Receptor-Associated Factor 6 , HSP90 Heat-Shock Proteins/metabolism
10.
Sci China Life Sci ; 67(3): 579-595, 2024 Mar.
Article En | MEDLINE | ID: mdl-38038885

Influenza A virus (IAV) commandeers numerous host cellular factors for successful replication. However, very few host factors have been revealed to be involved in the fusion of viral envelope and late endosomal membranes. In this study, we identified cation-dependent mannose-6-phosphate receptor (M6PR) as a crucial host factor for the replication of IAV. We found that siRNA knockdown of M6PR expression significantly reduced the growth titers of different subtypes of IAV, and that the inhibitory effect of M6PR siRNA treatment on IAV growth was overcome by the complement of exogenously expressed M6PR. When A549 cells were treated with siRNA targeting M6PR, the nuclear accumulation of viral nucleoprotein (NP) was dramatically inhibited at early timepoints post-infection, indicating that M6PR engages in the early stage of the IAV replication cycle. By investigating the role of M6PR in the individual entry and post-entry steps of IAV replication, we found that the downregulation of M6PR expression had no effect on attachment, internalization, early endosome trafficking, or late endosome acidification. However, we found that M6PR expression was critical for the fusion of viral envelope and late endosomal membranes. Of note, M6PR interacted with the hemagglutinin (HA) protein of IAV, and further studies showed that the lumenal domain of M6PR and the ectodomain of HA2 mediated the interaction and directly promoted the fusion of the viral and late endosomal membranes, thereby facilitating IAV replication. Together, our findings highlight the importance of the M6PR-HA interaction in the fusion of viral and late endosomal membranes during IAV replication.


Influenza A virus , Influenza, Human , Humans , Influenza A virus/genetics , Endosomes/metabolism , Intracellular Membranes , A549 Cells , RNA, Small Interfering/metabolism , Virus Replication , Influenza, Human/genetics
11.
Heliyon ; 9(10): e20536, 2023 Oct.
Article En | MEDLINE | ID: mdl-37842611

Video propaganda is reported effectively improving patients' understanding of operation. However, whether a video introducing patients' most concerns can reduce preoperative anxiety and promote recovery stays unsealed. In this study, we investigated the effects of complementary therapy of educational video during preoperative visit. The results showed that thirty-five (23.2%) parents in Group Control were diagnosed as anxiety according to SAS, and nineteen (12.3%) patients were diagnosed after video intervention. The APAIs anxiety score and APAIs information score in Group Video were lower than those in Group Control. Compared with Group Control, video visit helped to increase the first-attempt pass rate of the knowledge retention exam and solve the patient's most worried concerns, and decrease incidence of emergence agitation, total cost of hospitalization and length of hospital stay. Moreover, video visit improved satisfaction degrees of patients and their main family members. Briefly, our study demonstrated video visit can improve patients' knowledge of anesthesia and decrease their preoperative anxiety, which may represent an important complementary therapy to routine preoperative visits.

12.
Euro Surveill ; 28(41)2023 10.
Article En | MEDLINE | ID: mdl-37824247

BackgroundTwo human cases of avian influenza A (H3N8) virus infection were reported in China in 2022.AimTo characterise H3N8 viruses circulating in China in September 2021-May 2022.MethodsWe sampled poultry and poultry-related environments in 25 Chinese provinces. After isolating H3N8 viruses, whole genome sequences were obtained for molecular and phylogenetic analyses. The specificity of H3N8 viruses towards human or avian receptors was assessed in vitro. Their ability to replicate in chicken and mice, and to transmit between guinea pigs was also investigated.ResultsIn total, 98 H3N8 avian influenza virus isolates were retrieved from 38,639 samples; genetic analysis of 31 representative isolates revealed 17 genotypes. Viruses belonging to 10 of these genotypes had six internal genes originating from influenza A (H9N2) viruses. These reassorted viruses could be found in live poultry markets and comprised the strains responsible for the two human infections. A subset of nine H3N8 viruses (including six reassorted) that replicated efficiently in mice bound to both avian-type and human-type receptors in vitro. Three reassorted viruses were shed by chickens for up to 9 days, replicating efficiently in their upper respiratory tract. Five reassorted viruses tested on guinea pigs were transmissible among these by respiratory droplets.ConclusionAvian H3N8 viruses with H9N2 virus internal genes, causing two human infections, occurred in live poultry markets in China. The low pathogenicity of H3N8 viruses in poultry allows their continuous circulation with potential for reassortment. Careful monitoring of spill-over infections in humans is important to strengthen early-warning systems and maintain influenza pandemic preparedness.


Influenza A Virus, H3N8 Subtype , Influenza A Virus, H9N2 Subtype , Influenza in Birds , Influenza, Human , Poultry Diseases , Animals , Humans , Mice , Guinea Pigs , Influenza, Human/epidemiology , Poultry , Influenza in Birds/epidemiology , Influenza A Virus, H9N2 Subtype/genetics , Phylogeny , Chickens , China/epidemiology , Poultry Diseases/epidemiology
13.
Emerg Infect Dis ; 29(7): 1367-1375, 2023 07.
Article En | MEDLINE | ID: mdl-37347504

Highly pathogenic avian influenza (HPAI) subtype H5N1 clade 2.3.4.4b virus has spread globally, causing unprecedented large-scale avian influenza outbreaks since 2020. In 2021, we isolated 17 highly pathogenic avian influenza H5N1 viruses from wild birds in China. To determine virus origin, we genetically analyzed 1,529 clade 2.3.4.4b H5N1 viruses reported globally since October 2020 and found that they formed 35 genotypes. The 17 viruses belonged to genotypes G07, which originated from eastern Asia, and G10, which originated from Russia. The viruses were moderately pathogenic in mice but were highly lethal in ducks. The viruses were in the same antigenic cluster as the current vaccine strain (H5-Re14) used in China. In chickens, the H5/H7 trivalent vaccine provided complete protection against clade 2.3.4.4b H5N1 virus challenge. Our data indicate that vaccination is an effective strategy for preventing and controlling the globally prevalent clade 2.3.4.4b H5N1 virus.


Influenza A Virus, H5N1 Subtype , Influenza A virus , Influenza in Birds , Animals , Mice , Influenza A Virus, H5N1 Subtype/genetics , Chickens , Animals, Wild , Influenza A virus/genetics , China/epidemiology , Phylogeny
14.
Anal Chem ; 95(11): 4834-4839, 2023 03 21.
Article En | MEDLINE | ID: mdl-36876898

The growing opportunities recognized for covalent drug inhibitors, like KRAS G12C inhibitors, are driving the need for mass spectrometry methods that can quickly and robustly measure therapeutic drug activity in vivo for drug discovery research and development. Effective front-end sample preparation is critical for proteins extracted from tumors but is generally labor intensive and impractical for large sample numbers typical in pharmacodynamic (PD) studies. Herein, we describe an automated and integrated sample preparation method for the measurement of activity levels of KRAS G12C drug inhibitor alkylation from complex tumor samples involving high throughput detergent removal and preconcentration followed by quantitation using mass spectrometry. We introduce a robust assay with an average intra-assay coefficient of variation (CV) of 4% and an interassay CV of 6% obtained from seven studies, enabling us to understand the relationship between KRAS G12C target occupancy and the therapeutic PD effect from mouse tumor samples. Further, the data demonstrated that the drug candidate GDC-6036, a KRAS G12C covalent inhibitor, shows dose-dependent target inhibition (KRAS G12C alkylation) and MAPK pathway inhibition, which correlate with high antitumor potency in the MIA PaCa-2 pancreatic xenograft model.


Antineoplastic Agents , Proto-Oncogene Proteins p21(ras) , Humans , Animals , Mice , Proto-Oncogene Proteins p21(ras)/genetics , Cell Line, Tumor , Mutation , Antineoplastic Agents/pharmacology , Disease Models, Animal
15.
Environ Health Perspect ; 131(2): 27002, 2023 02.
Article En | MEDLINE | ID: mdl-36723383

BACKGROUND: Perfluoroalkyl acids (PFAA) have been measured in ovarian follicular fluid from women using in vitro fertilization (IVF), although associations between follicular fluid PFAA and IVF outcomes have been inconsistent. OBJECTIVES: We investigated the association between follicular fluid PFAA and embryo quality in women undergoing IVF. METHODS: We prospectively enrolled 729 women undergoing IVF treatment in Guangxi province, China, from July 2018 to December 2018. We measured 32 PFAA, including branched isomers, in follicular fluid using ultra-performance liquid chromatography coupled to tandem mass spectrometry. We applied restricted cubic splines, linear regression, and log-binominal regression models to investigate associations between follicular fluid PFAA and embryo quality, adjusting for confounding variables and investigated oocyte maturity as an intervening variable using causal mediation analysis. We further estimated the overall effect of the PFAA mixture on outcomes using Bayesian kernel machine regression (BKMR). RESULTS: We detected 8 of 32 measured PFAA in >85% of follicular fluid samples. Higher PFAA concentrations were associated with fewer high-quality embryos from IVF. The high-quality embryo rates at the 50th percentile of linear perfluoro-1-octanesulfonate acid (n-PFOS), all branched PFOS isomers (Br-PFOS) and linear perfluoro-n-octanoic acid (n-PFOA) were -6.34% [95% confidence interval (CI): -9.45, -3.32%], -16.78% (95% CI: -21.98, -11.58%) and -8.66% (95% CI: -11.88, -5.43%) lower, respectively, than the high quality embryo rates at the reference 10th percentile of PFAA. Oocyte maturity mediated 11.76% (95% CI: 3.18, 31.80%) and 14.28% (95% CI: 2.95, 31.27%) of the n-PFOS and n-PFOA associations, respectively. The results of the BKMR models showed a negative association between the PFAA mixture and the probability of high-quality embryos, with branched PFOS isomers having posterior inclusion probabilities of 1 and accounting for the majority of the association. DISCUSSION: Exposure to higher PFAA concentrations in follicular fluid was associated with poorer embryo quality during IVF. Branched PFOS isomers may have a stronger effect than linear PFOS isomers. More studies are needed to confirm these findings and to directly estimate the effects on pregnancy and live-birth outcomes. https://doi.org/10.1289/EHP10857.


Alkanesulfonic Acids , Fluorocarbons , Pregnancy , Female , Humans , Follicular Fluid , Prospective Studies , Bayes Theorem , China , Fertilization in Vitro
16.
Biopharm Drug Dispos ; 44(1): 60-70, 2023 Feb.
Article En | MEDLINE | ID: mdl-36630933

Predicting the brain penetration of drugs has been notoriously difficult; however, recently, permeability-limited brain models have been constructed. Lead optimization for central nervous system compounds often focuses on compounds that have low transporter efflux, where passive permeability could be a main driver in determining cerebrospinal fluid (CSF)/brain concentrations. The main objective of this study was to evaluate the translatability of passive permeability data generated from different in vitro systems and its impact on the prediction of human CSF/brain concentrations using physiologically-based pharmacokinetic (PBPK) modeling. In vitro data were generated using gMDCK and parallel artificial membrane permeability assay-blood-brain barrier for comparison and predictions using a quantitative structure-activity relationship model were also evaluated. PBPK modeling was then performed for seven compounds with moderate-high permeability and a range of efflux in vitro, and the CSF/brain mass concentrations and Kpuu were reasonably predicted. This work provides the first step of a promising approach using bottom-up PBPK modeling for CSF/brain penetration prediction to support lead optimization and clinical candidate selection.


Blood-Brain Barrier , Brain , Humans , Blood-Brain Barrier/physiology , Biological Transport , Cell Membrane Permeability , Membrane Transport Proteins , Models, Biological
17.
J Med Virol ; 95(2): e28476, 2023 02.
Article En | MEDLINE | ID: mdl-36609855

The H10 subtypes of avian influenza viruses pose a continual threat to the poultry industry and human health. The sporadic spillover of H10 subtypes viruses from poultry to humans is represented by the H10N8 human cases in 2013 and the recent H10N3 human infection in 2021. However, the genesis and characteristics of the recent reassortment H10N3 viruses have not been systemically investigated. In this study, we characterized 20 H10N3 viruses isolated in live poultry markets during routine nationwide surveillance in China from 2014 to 2021. The viruses in the recent reassortant genotype acquired their hemagglutinin (HA) and neuraminidase (NA) genes from the duck H10 viruses and H7N3 viruses, respectively, whereas the internal genes were derived from chicken H9N2 viruses as early as 2019. Receptor-binding analysis indicated that two of the tested H10N3 viruses had a higher affinity for human-type receptors than for avian-type receptors, highlighting the potential risk of avian-to-human transmission. Animal studies showed that only viruses belonging to the recent reassortant genotype were pathogenic in mice; two tested viruses transmitted via direct contact and one virus transmitted by respiratory droplets in guinea pigs, though with limited efficiency. These findings emphasize the need for enhanced surveillance of H10N3 viruses.


Influenza A Virus, H9N2 Subtype , Influenza in Birds , Influenza, Human , Humans , Animals , Guinea Pigs , Mice , Influenza A Virus, H9N2 Subtype/genetics , Influenza A Virus, H7N3 Subtype , Poultry , Chickens , China/epidemiology , Phylogeny , Reassortant Viruses/genetics
18.
Sci China Life Sci ; 66(2): 269-282, 2023 02.
Article En | MEDLINE | ID: mdl-36219302

Animal influenza viruses continue to pose a threat to human public health. The Eurasian avian-like H1N1 (EA H1N1) viruses are widespread in pigs throughout Europe and China and have caused human infections in several countries, indicating their pandemic potential. To carefully monitor the evolution of the EA H1N1 viruses in nature, we collected nasal swabs from 103,110 pigs in 22 provinces in China between October 2013 and December 2019, and isolated 855 EA H1N1 viruses. Genomic analysis of 319 representative viruses revealed that these EA H1N1 viruses formed eight different genotypes through reassortment with viruses of other lineages circulating in humans and pigs, and two of these genotypes (G4 and G5) were widely distributed in pigs. Animal studies indicated that some strains have become highly pathogenic in mice and highly transmissible in ferrets via respiratory droplets. Moreover, two-thirds of the EA H1N1 viruses reacted poorly with ferret serum antibodies induced by the currently used H1N1 human influenza vaccine, suggesting that existing immunity may not prevent the transmission of the EA H1N1 viruses in humans. Our study reveals the evolution and pandemic potential of EA H1N1 viruses and provides important insights for future pandemic preparedness.


Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza Vaccines , Influenza, Human , Orthomyxoviridae Infections , Swine Diseases , Humans , Swine , Animals , Mice , Influenza A Virus, H1N1 Subtype/genetics , Orthomyxoviridae Infections/veterinary , Ferrets , Influenza A virus/genetics , Influenza, Human/prevention & control , China
19.
Front Endocrinol (Lausanne) ; 14: 1301505, 2023.
Article En | MEDLINE | ID: mdl-38239979

Introduction: Attempts to artificially activate unfertilized oocytes at 24 h post intracytoplasmic sperm injection (ICSI) have generally resulted in poor outcomes. This study aims to explore a new strategy for early judgement and rescue activation of unfertilized oocytes at 5 h post ICSI to avoid unexpected fertilization failure (UFF) or unexpected low fertilization (ULF) in ICSI cycles. Methods: Firstly, time-lapse data from 278 ICSI cycles were retrospectively analyzed to establish an indicator for fertilization failure prediction. Secondly, 14 UFF and 20 ULF cycles were enrolled for an observational study, early rescue oocyte activation (EROA) was performed on oocytes without post-ICSI Pb2 extrusion to investigate fertilization efficiency, embryo development and clinical outcomes. Results: The average time to Pb2 extrusion post-ICSI was 3.03±1.21 h, 95.54% of oocytes had extruded Pb2 before 5 h, and the sensitivity and specificity for monitoring Pb2 extrusion at 5 h by time-lapse imaging to predict fertilization were 99.59% and 99.78%, respectively. Early rescue activation of oocytes with no Pb2 extrusion resulted in acceptable fertilization and embryo developmental outcomes, in terms of the fertilization rate (75.00, 72.99%), 2PN fertilization rate (61.36, 56.93%), good-quality embryo rate (42.59, 50.00%), blastocyst formation rate (48.28, 46.03%), good-quality blastocyst rate (34.48, 33.33%), and oocyte utilization rate (36.36, 27.74%), for both UFF and ULF cycles. The clinical pregnancy, embryo implantation, and early miscarriage rates in the rescue oocyte activation group did not significantly differ from those in the Pb2 extrusion group. Fourteen unexpected fertilization failures and 20 low fertilization ICSI cycles were rescued and resulted in clinical pregnancy rates of 40.00% (4/10) and 57.14% (8/14), respectively. Conclusions: This study demonstrates that monitoring Pb2 extrusion by time-lapse imaging can accurately predict fertilization outcomes, suggesting that early rescue oocyte activation at 5 h post ICSI is an effective strategy for avoiding unexpected fertilization failure and low fertilization in ICSI cycles.


Lead , Sperm Injections, Intracytoplasmic , Pregnancy , Female , Male , Humans , Sperm Injections, Intracytoplasmic/methods , Retrospective Studies , Semen , Oocytes , Fertilization/physiology
20.
ACS Omega ; 7(43): 38409-38416, 2022 Nov 01.
Article En | MEDLINE | ID: mdl-36340144

In this work, we report a fast, portable, and economical microfluidic platform for the simultaneous detection of nucleic acid and proteins. Using SARS-CoV-2 as a target, this microfluidic chip enabled to simultaneously detect the SARS-CoV-2 RNA (N gene) antigen (or specific IgG antibody) with respective detection limits of 1 copy/µL for nucleic acid, 0.85 ng/mL for antigen, and 5.80 ng/mL for IgG within 30 min with high stability and anti-interference ability. The capability of this system in clinical applications was further evaluated using clinical samples, displaying 100% sensitivity and 100% specificity for COVID-19 diagnosis. These findings demonstrate the potential of this method to be used for the detection and subsequent control of pathogens.

...