Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Sci Adv ; 10(27): eadl6428, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38959319

RESUMEN

Cyanobacteria use a series of adaptation strategies and a complicated regulatory network to maintain intracellular iron (Fe) homeostasis. Here, a global activator named IutR has been identified through three-dimensional chromosome organization and transcriptome analysis in a model cyanobacterium Synechocystis sp. PCC 6803. Inactivation of all three homologous IutR-encoding genes resulted in an impaired tolerance of Synechocystis to Fe deficiency and loss of the responses of Fe uptake-related genes to Fe-deplete conditions. Protein-promoter interaction assays confirmed the direct binding of IutR with the promoters of genes related to Fe uptake, and chromatin immunoprecipitation sequencing analysis further revealed that in addition to Fe uptake, IutR could regulate many other physiological processes involved in intracellular Fe homeostasis. These results proved that IutR is an important transcriptional activator, which is essential for cyanobacteria to induce Fe-deficiency response genes. This study provides in-depth insights into the complicated Fe-deficient signaling network and the molecular mechanism of cyanobacteria adaptation to Fe-deficient environments.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Homeostasis , Hierro , Regiones Promotoras Genéticas , Synechocystis , Hierro/metabolismo , Synechocystis/metabolismo , Synechocystis/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Cianobacterias/metabolismo , Cianobacterias/genética , Perfilación de la Expresión Génica
2.
J Am Chem Soc ; 146(17): 11855-11865, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38634945

RESUMEN

Creating structural defects in a controlled manner within metal-organic frameworks (MOFs) poses a significant challenge for synthesis, and concurrently, identifying the types and distributions of these defects is also a formidable task for characterization. In this study, we demonstrate that by employing 2-sulfonylterephthalic acid as the ligand for synthesizing Zr (or Hf)-based MOFs, a crystal phase transformation from the common fcu topology to the rare jmt topology can be easily facilitated using a straightforward mixed-solvent strategy. The jmt phase, characterized by an extensively open framework, can be considered a derivative of the fcu phase, generated through the introduction of missing-cluster defects. We have explicitly identified both MOF phases, their intermediate states, and the novel core-shell structures they form using ultralow-dose high-resolution transmission electron microscopy. In addition to facilitating phase engineering, the incorporation of sulfonic groups in MOFs imparts ionic selectivity, making them applicable for osmotic energy harvesting through mixed matrix membrane fabrication. The membrane containing the jmt-phase MOF exhibits an exceptionally high peak power density of 10.08 W m-2 under a 50-fold salinity gradient (NaCl: 0.5 M|0.01 M), which surpasses the threshold of 5 W m-2 for commercial applications and can be attributed to the combination of large pore size, extensive porosity, and abundant sulfonic groups in this novel MOF material.

3.
Angew Chem Int Ed Engl ; 63(26): e202405553, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38594220

RESUMEN

Oxime ethers are attractive compounds in medicinal scaffolds due to the biological and pharmaceutical properties, however, the crucial and widespread step of industrial oxime formation using explosive hydroxylamine (NH2OH) is insecure and troublesome. Herein, we present a convenient method of oxime ether synthesis in a one-pot tandem electrochemical system using magnesium based metal-organic framework-derived magnesium oxide anchoring in self-supporting carbon nanofiber membrane catalyst (MgO-SCM), the in situ produced NH2OH from nitrogen oxides electrocatalytic reduction coupled with aldehyde to produce 4-cyanobenzaldoxime with a selectivity of 93 % and Faraday efficiency up to 65.1 %, which further reacted with benzyl bromide to directly give oxime ether precipitate with a purity of 97 % by convenient filtering separation. The high efficiency was attributed to the ultrafine MgO nanoparticles in MgO-SCM, effectively inhibiting hydrogen evolution reaction and accelerating the production of NH2OH, which rapidly attacked carbonyl of aldehydes to form oximes, but hardly crossed the hydrogenation barrier of forming amines, thus leading to a high yield of oxime ether when coupling benzyl bromide nucleophilic reaction. This work highlights the importance of kinetic control in complex electrosynthetic organonitrogen system and demonstrates a green and safe alternative method for synthesis of organic nitrogen drug molecules.

4.
Adv Mater ; 36(8): e2306910, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37884276

RESUMEN

Electron modulation presents a captivating approach to fabricate efficient electrocatalysts for the oxygen evolution reaction (OER), yet it remains a challenging undertaking. In this study, an effective strategy is proposed to regulate the electronic structure of metal-organic frameworks (MOFs) by the construction of MOF-on-MOF heterogeneous architectures. As a representative heterogeneous architectures, MOF-74 on MOF-274 hybrids are in situ prepared on 3D metal substrates (NiFe alloy foam (NFF)) via a two-step self-assembly method, resulting in MOF-(74 + 274)@NFF. Through a combination of spectroscopic and theory calculation, the successful modulation of the electronic property of MOF-(74 + 274)@NFF is unveiled. This modulation arises from the phase conjugation of the two MOFs and the synergistic effect of the multimetallic centers (Ni and Fe). Consequently, MOF-(74 + 274)@NFF exhibits excellent OER activity, displaying ultralow overpotentials of 198 and 223 mV at a current density of 10 mA cm-2 in the 1.0 and 0.1 M KOH solutions, respectively. This work paves the way for manipulating the electronic structure of electrocatalysts to enhance their catalytic activity.

5.
Adv Sci (Weinh) ; 11(3): e2306398, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38018323

RESUMEN

Precise control of exciton confinement in metal halide perovskites is critical to the development of high-performance, stable optoelectronic devices. A significant hurdle is the swift completion of ionic metathesis reactions, often within seconds, making consistent control challenging. Herein, the introduction of different steric hindrances in a Cs+ sublattice within CsYb2 F7 is reported, which effectively modulates the reaction rate of Cs+ with lead (Pb2+ ) and halide ions in solution, extending the synthesis time for perovskite nanostructures to tens of minutes. Importantly, the Cs+ sublattice provides a crystal facet-dependent preference for perovskite growth and thus exciton confinement, allowing the simultaneous occurrence of up to six emission bands of CsPbBr3 . Moreover, the rigid CsYb2 F7 nano template offers high activation energy and enhances the stability of the resulting perovskite nanostructures. This methodology provides a versatile approach to synthesizing functional heterostructures. Its robustness is demonstrated by in-situ growth of perovskite nanostructures on Cs+ -mediated metal-organic frameworks.

6.
Science ; 380(6645): 633-638, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37167385

RESUMEN

Structural and compositional inhomogeneity is common in zeolites and considerably affects their properties. Thickness-limited lateral resolution, lack of depth resolution, and electron dose-constrained focusing limit local structural studies of zeolites in conventional transmission electron microscopy (TEM). We demonstrate that a multislice ptychography method based on four-dimensional scanning TEM (4D-STEM) data can overcome these limitations. Images obtained from a ~40-nanometer-thick MFI zeolite exhibited a lateral resolution of ~0.85 angstrom that enabled the identification of individual framework oxygen (O) atoms and the precise determination of the orientations of adsorbed molecules. Furthermore, a depth resolution of ~6.6 nanometers allowed probing of the three-dimensional distribution of O vacancies, as well as the phase boundaries in intergrown MFI and MEL zeolites. The 4D-STEM ptychography can be generally applied to other materials with similar high electron-beam sensitivity.

7.
Natl Sci Rev ; 10(1): nwac100, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36879660

RESUMEN

Rational design and synthesis of catalytically active two-dimensional (2D) materials with an abundance of atomically precise active sites in their basal planes remains a great challenge. Here, we report a ligand exchange strategy to exfoliate bulk [Cu4(OH)6][O3S(CH2)4SO3] cuprate crystals into atomically thin 2D cuprate layers ([Cu2(OH)3]+). The basal plane of 2D cuprate layers contains periodic arrays of accessible unsaturated Cu(II) single sites (2D-CuSSs), which are found to promote efficient oxidative Chan-Lam coupling. Our mechanistic studies reveal that the reactions proceed via coordinatively unsaturated CuO4(II) single sites with the formation of Cu(I) species in the rate-limiting step, as corroborated by both operando experimental and theoretical studies. The robust stability of 2D-CuSSs in both batch and continuous flow reactions, coupled with their recyclability and good performance in complex molecule derivatization, render 2D-CuSSs attractive catalyst candidates for broad utility in fine chemical synthesis.

8.
Nanoscale ; 15(5): 2122-2133, 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36648401

RESUMEN

The electrocatalytic formic acid oxidation (FAO) is the crucial anodic reaction of direct formic acid fuel cells (DFAFCs), but its activity remains to be largely improved in order to be practically viable. The rational development of enhanced catalysts requires thorough consideration of various contributing factors that are possibly integrated in composite systems. Here, we demonstrate that, Pd(100)/SnO2 interfaces, provided being efficiently exploited, can significantly boost FAO activity by a factor of ∼10, compared with pure Pd(100) facets, with the mass activity reaching a record of 14.55 A mgPd-1 at a 40 mV-lower peak potential. Unique Pd/SnO2 nanocomposites with a myriad of Pd(100)/SnO2 interfaces were obtained by a newly developed successive seeded growth strategy, wherein pre-formed SnO2 nanospheres are used as seeds for two-round overgrowth of multitudinous Pd nanocubes. Using electron microscopic, electrochemical, spectroscopic and computational analyses, we found that the Pd(100)/SnO2 interfaces induce lattice contraction and electron loss on Pd nanocubes, which optimize intermediate binding during FAO. Moreover, we showed that the good cubicity of the Pd nanocubes and the presence of SnO2 nearby further promote the activity by facilitating the potential-determining step and the elimination of the poisoning CO intermediate, respectively. As such, the combined high intrinsic activity and number density of Pd(100)/SnO2 interfaces enabled the superior activity of the Pd/SnO2 nanocomposites. The composite material presented here holds promise for application in DFAFCs, but equally importantly, the insights regarding the structure-performance relationship would be beneficial for designing efficient metal/oxide composite catalysts for diverse electro- and photo-catalytic reactions.

9.
Appl Environ Microbiol ; 89(1): e0173222, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36533965

RESUMEN

Marine cyanobacteria contribute to approximately half of the ocean primary production, and their biomass is limited by low iron (Fe) bioavailability in many regions of the open seas. The mechanisms by which marine cyanobacteria overcome Fe limitation remain unclear. In this study, multiple Fe uptake pathways have been identified in a coastal strain of Synechococcus sp. strain PCC 7002. A total of 49 mutants were obtained by gene knockout methods, and 10 mutants were found to have significantly decreased growth rates compared to the wild type (WT). The genes related to active Fe transport pathways such as TonB-dependent transporters and the synthesis and secretion of siderophores are found to be essential for the adaptation of Fe limitation in Synechococcus sp. PCC 7002. By comparing the Fe uptake pathways of this coastal strain with other open-ocean cyanobacterial strains, it can be concluded that the Fe uptake strategies from different cyanobacteria have a strong relationship with the Fe bioavailability in their habitats. The evolution and adaptation of cyanobacterial iron acquisition strategies with the change of iron environments from ancient oceans to modern oceans are discussed. This study provides new insights into the diversified strategies of marine cyanobacteria in different habitats from temporal and spatial scales. IMPORTANCE Iron (Fe) is an important limiting factor of marine primary productivity. Cyanobacteria, the oldest photosynthetic oxygen-evolving organisms on the earth, play crucial roles in marine primary productivity, especially in the oligotrophic ocean. How they overcome Fe limitation during the long-term evolution process has not been fully revealed. Fe uptake mechanisms of cyanobacteria have been partially studied in freshwater cyanobacteria but are largely unknown in marine cyanobacterial species. In this paper, the characteristics of Fe uptake mechanisms in a coastal model cyanobacterium, Synechococcus sp. PCC 7002, were studied. Furthermore, the relationship between Fe uptake strategies and Fe environments of cyanobacterial habitats has been revealed from temporal and spatial scales, which provides a good case for marine microorganisms adapting to changes in the marine environment.


Asunto(s)
Hierro , Synechococcus , Hierro/metabolismo , Synechococcus/genética , Synechococcus/metabolismo , Transporte Biológico , Sideróforos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
10.
Nat Chem ; 15(2): 230-239, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36357788

RESUMEN

The controllable packing of functional nanoparticles (NPs) into crystalline lattices is of interest in the development of NP-based materials. Here we demonstrate that the size, morphology and symmetry of such supercrystals can be tailored by adjusting the surface dynamics of their constituent NPs. In the presence of excess tetraethylammonium cations, atomically precise [Au25(SR)18]- NPs (where SR is a thiolate ligand) can be crystallized into micrometre-sized hexagonal rod-like supercrystals, rather than as face-centred-cubic superlattices otherwise. Experimental characterization supported by theoretical modelling shows that the rod-like crystals consist of polymeric chains in which Au25 NPs are held together by a linear SR-[Au(I)-SR]4 interparticle linker. This linker is formed by conjugation of two dynamically detached SR-[Au(I)-SR]2 protecting motifs from adjacent Au25 particles, and is stabilized by a combination of CH⋯π and ion-pairing interactions between tetraethylammonium cations and SR ligands. The symmetry, morphology and size of the resulting supercrystals can be systematically tuned by changing the concentration and type of the tetraalkylammonium cations.

11.
J Am Chem Soc ; 144(47): 21502-21511, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36332199

RESUMEN

Electrochemical CO2 conversion is a promising way for sustainable chemical fuel production, yet the conversion efficiency is strongly limited by the sluggish kinetics and complex reaction pathways. Here we report the ultrathin conjugated metalloporphyrin covalent organic framework epitaxially grown on graphene as a two-dimensional van der Waals heterostructure to catalyze CO2 reduction. Operando X-ray absorption and density functional theory calculations reveal the strong interlayer coupling leads to electron-deficient metal centers and speeds up electrocatalysis. The Co(III)-N4 centers exhibit a CO Faradaic efficiency of 97% at a partial current density of 8.2 mA cm-2 in an H-cell, along with a stable running over 30 h. The selectivity of CO approached 99% with a partial current density of 191 mA cm-2 in a liquid flow cell, and the turnover frequency achieved 50 400 h-1 at -1.15 V vs RHE, outperforming most reported organometallic frameworks. This work highlights the key role of strong electronic coupling between van der Waals layers for accelerating the dynamics of CO2 conversion.

12.
Molecules ; 27(21)2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36363972

RESUMEN

Direct conversion of methane to methanol is an effective and practical process to improve the efficiency of natural gas utilization. Copper (Cu)-based catalysts have attracted great research attention, due to their unique ability to selectively catalyze the partial oxidation of methane to methanol at relatively low temperatures. In recent decades, many different catalysts have been studied to achieve a high conversion of methane to methanol, including the Cu-based enzymes, Cu-zeolites, Cu-MOFs (metal-organic frameworks) and Cu-oxides. In this mini review, we will detail the obtained evidence on the exact state of the active Cu sites on these various catalysts, which have arisen from the most recently developed techniques and the results of DFT calculations. We aim to establish the structure-performance relationship in terms of the properties of these materials and their catalytic functionalities, and also discuss the unresolved questions in the direct conversion of methane to methanol reactions. Finally, we hope to offer some suggestions and strategies for guiding the practical applications regarding the catalyst design and engineering for a high methanol yield in the methane oxidation reaction.


Asunto(s)
Metanol , Zeolitas , Metano , Dominio Catalítico , Catálisis
13.
Nat Mater ; 21(10): 1183-1190, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35941363

RESUMEN

The development of membranes that block solutes while allowing rapid water transport is of great importance. The microstructure of the membrane needs to be rationally designed at the molecular level to achieve precise molecular sieving and high water flux simultaneously. We report the design and fabrication of ultrathin, ordered conjugated-polymer-framework (CPF) films with thicknesses down to 1 nm via chemical vapour deposition and their performance as separation membranes. Our CPF membranes inherently have regular rhombic sub-nanometre (10.3 × 3.7 Å) channels, unlike membranes made of carbon nanotubes or graphene, whose separation performance depends on the alignment or stacking of materials. The optimized membrane exhibited a high water/NaCl selectivity of ∼6,900 and water permeance of ∼112 mol m-2 h-1 bar-1, and salt rejection >99.5% in high-salinity mixed-ion separations driven by osmotic pressure. Molecular dynamics simulations revealed that water molecules quickly and collectively pass through the membrane by forming a continuous three-dimensional network within the hydrophobic channels. The advent of ordered CPF provides a route towards developing carbon-based membranes for precise molecular separation.


Asunto(s)
Grafito , Nanotubos de Carbono , Polímeros , Cloruro de Sodio , Agua/química
14.
Nature ; 602(7898): 606-611, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35197620

RESUMEN

Two-dimensional materials with monolayer thickness and extreme aspect ratios are sought for their high surface areas and unusual physicochemical properties1. Liquid exfoliation is a straightforward and scalable means of accessing such materials2, but has been restricted to sheets maintained by strong covalent, coordination or ionic interactions3-10. The exfoliation of molecular crystals, in which repeat units are held together by weak non-covalent bonding, could generate a greatly expanded range of two-dimensional crystalline materials with diverse surfaces and structural features. However, at first sight, these weak forces would seem incapable of supporting such intrinsically fragile morphologies. Against this expectation, we show here that crystals composed of discrete supramolecular coordination complexes can be exfoliated by sonication to give free-standing monolayers approximately 2.3 nanometres thick with aspect ratios up to approximately 2,500:1, sustained purely by apolar intermolecular interactions. These nanosheets are characterized by atomic force microscopy and high-resolution transmission electron microscopy, confirming their crystallinity. The monolayers possess complex chiral surfaces derived partly from individual supramolecular coordination complex components but also from interactions with neighbours. In this respect, they represent a distinct type of material in which molecular components are all equally exposed to their environment, as if in solution, yet with properties arising from cooperation between molecules, because of crystallinity. This unusual nature is reflected in the molecular recognition properties of the materials, which bind carbohydrates with strongly enhanced enantiodiscrimination relative to individual molecules or bulk three-dimensional crystals.


Asunto(s)
Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión
15.
J Am Chem Soc ; 144(7): 3182-3191, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35157426

RESUMEN

With the development of ultralow-dose (scanning) transmission electron microscopy ((S)TEM) techniques, atomic-resolution imaging of highly sensitive nanomaterials has recently become possible. However, applying these techniques to the study of sensitive bulk materials remains challenging due to the lack of suitable specimen preparation methods. We report that cryogenic focused ion beam (cryo-FIB) can provide a solution to this challenge. We successfully extracted thin specimens from metal-organic framework (MOF) crystals and a hybrid halide perovskite single-crystal film solar cell using cryo-FIB without damaging the inherent structures. The high quality of the specimens enabled the subsequent (S)TEM and electron diffraction studies to reveal complex unknown local structures at an atomic resolution. The obtained structural information allowed us to resolve planar defects in MOF HKUST-1, three-dimensionally reconstruct a concomitant phase in MOF UiO-66, and discover a new CH3NH3PbI3 structure and locate its distribution in a single-crystal film perovskite solar cell. This proof-of-concept study demonstrates that cryo-FIB has a unique ability to handle highly sensitive materials, which can substantially expand the range of applications for electron microscopy.

16.
Environ Microbiol ; 24(2): 551-565, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33817959

RESUMEN

In oligotrophic oceans, low bioavailability of Fe is a key factor limiting primary productivity. However, excessive Fe in cells leads to the Fenton reaction, which is toxic to cells. Cyanobacteria must strictly maintain intracellular Fe homeostasis. Here, we knocked out a series of genes encoding efflux systems in Synechocystis sp. PCC 6803, and found eight genes that are required for high Fe detoxification. Unexpectedly, the HlyBD-TolC efflux system plays an important role in the adaptation of Synechocystis under Fe-deficient conditions. Mutants of HlyD and TolC grew worse than the wild-type strain under low-Fe conditions and showed significantly lower intracellular Fe contents than the wild-type strain. We excluded the possibility that the low Fe sensitivity of the HlyBD-TolC mutants was caused by a loss of the S-layer, the main extracellular protein secreted via this efflux system. Inactivation of the HlyD protein influenced type IV pili formation and direct inactivation of type IV pili related genes affected the adaptation to low-Fe conditions. HlyBD-TolC system is likely involved in the formation of type IV pili and indirectly influenced Fe acquisition. Our findings suggest that efflux system in non-siderophore-producing cyanobacteria can facilitate Fe uptake and help cells adapt to Fe-deficient conditions via novel pathways.


Asunto(s)
Synechocystis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte Biológico/genética , Fimbrias Bacterianas/metabolismo , Homeostasis , Hierro/metabolismo , Synechocystis/genética , Synechocystis/metabolismo
17.
J Am Chem Soc ; 143(50): 21364-21378, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34881868

RESUMEN

Atomically dispersed noble metal catalysts have drawn wide attention as candidates to replace supported metal clusters and metal nanoparticles. Atomic dispersion can offer unique chemical properties as well as maximum utilization of the expensive metals. Addition of a second metal has been found to help reduce the size of Pt ensembles in bimetallic clusters; however, the stabilization of isolated Pt atoms in small nests of nonprecious metal atoms remains challenging. We now report a novel strategy for the design, synthesis, and characterization of a zeolite-supported propane dehydrogenation catalyst that incorporates predominantly isolated Pt atoms stably bonded within nests of Zn atoms located within the nanoscale pores of dealuminated zeolite Beta. The catalyst is stable in long-term operation and exhibits high activity and high selectivity to propene. Atomic resolution images, bolstered by X-ray absorption spectra, demonstrate predominantly atomic dispersion of the Pt in the nests and, with complementary infrared and nuclear magnetic resonance spectra, determine a structural model of the nested Pt.

18.
Ann Palliat Med ; 10(9): 9692-9701, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34628895

RESUMEN

BACKGROUND: Gestational diabetes mellitus (GDM) increases the incidence of adverse outcomes in pregnant women. Individual diet intervention (IDI) was developed in our center through collaboration with nutritionists to treat GDM and prevent further complications. We then aimed to analyze the effects of IDI on the level of blood glucose and pregnancy outcomes in pregnant women with GDM. METHODS: We retrospectively enrolled pregnant women with GDM between April 2016 and March 2020. Participants in the control group received routine GDM care, and those in the study group received extra IDI on the basis of routine GDM care. Demographic and clinical characteristics of participating pregnant women were retrospectively collected. The study outcomes were the status of blood glucose control after 6 weeks of IDI or conventional intervention and pregnancy outcomes. Univariable and multivariable logistic regression analyses were sequentially performed to determine the predictors of proper blood glucose control and risk factors of adverse pregnancy outcomes in the study population. RESULTS: A total of 817 pregnant women who had been diagnosed as GDM were enrolled in this study, including 435 admitted between April 2016 to March 2018 who received conventional medication and 382 who were admitted between April 2018 to March 2020 and received IDI. Generally, there was no significant difference in baseline characteristics between study and control groups. Glycated hemoglobin (HbA1c) level after intervention was statistically lower in the study group than in the control group (5.6±0.9 vs. 5.5±0.7, P=0.006). Multivariable logistic regression analysis revealed that IDI was a predictor of proper blood glucose control in GDM participants (P=0.003). There were more cesarean sections and cases of macrosomia in the control group than the study group, showing statistical difference (35.9% vs. 28.5%, P=0.026; 8.7% vs. 4.7%, P=0.023, respectively). According to multivariable logistic regression analysis, IDI was identified as playing a protective role against cesarean section in GDM participants (P=0.034) and it could reduce the incidence of macrosomia in GDM participants (P=0.028). CONCLUSIONS: This novel pattern of IDI may not only help stabilize blood glucose levels in pregnant women with GDM, but also reduce the incidence of adverse outcomes to a certain extent.


Asunto(s)
Diabetes Gestacional , Glucemia , Cesárea , Femenino , Prueba de Tolerancia a la Glucosa , Humanos , Embarazo , Resultado del Embarazo , Estudios Retrospectivos
19.
Angew Chem Int Ed Engl ; 60(45): 24227-24233, 2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34473888

RESUMEN

In this study, we successfully solve polymorphs A and B of zeolite EMM-17, which can only crystallize in sub-micrometer-sized crystals while containing complex stacking disorders, from the three-dimensional (3D) electron diffraction (ED) data. This is the first time that the atomic structure of this polymorph has been ab initio solved, and the result reveals a unique 10(12)×10(12)×11-ring channel system. Moreover, we acquire the first atomic-resolution images of EMM-17 using integrated differential phase-contrast scanning transmission electron microscopy. The images allow us to directly observe polymorphs B and C and discover a large number of local structural defects. Based on structural features unraveled from the reciprocal-space 3D ED data and real-space images, we propose a series of energetically feasible local structures in EMM-17. We also demonstrate that the unique porous structure of EMM-17 enables efficient kinetic separation of C6 alkane isomers.

20.
J Am Chem Soc ; 143(17): 6681-6690, 2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-33887909

RESUMEN

A bottom-up chemical synthesis of metal-organic frameworks (MOFs) permits significant structural diversity because of various combinations of metal centers and different organic linkers. However, fabrication generally complies with the classic hard and soft acids and bases (HSAB) theory. This restricts direct synthesis of desired MOFs with converse Lewis type of metal ions and ligands. Here we present a top-down strategy to break this limitation via the structural cleavage of MOFs to trigger a phase transition using a novel "molecular scalpel". A conventional CuBDC MOF (BDC = 1,4-benzenedicarboxylate) prepared from a hard acid (Cu2+) metal and a hard base ligand was chemically cleaved by l-ascorbic acid acting as chemical scalpel to fabricate a new Cu2BDC structure composed of a soft acid (Cu1+) and a hard base (BDC). Controlled phase transition was achieved by a series of redox steps to regulate the chemical state and coordination number of Cu ions, resulting in a significant change in chemical composition and catalytic activity. Mechanistic insights into structural cleavage and rearrangement are elaborated in detail. We show this novel strategy can be extended to general Cu-based MOFs and supramolecules for nanoscopic casting of unique architectures from existing ones.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA