Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Tohoku J Exp Med ; 263(1): 63-68, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38325832

RESUMEN

Early childhood caries (ECC) is common in children. Little is known about the genetic association of the methionine synthesis reductase (MTRR) gene rs1801394 and methionine synthetase (MTR) gene rs1805087 polymorphisms with ECC, which was examined in the Chinese Han population. Genotyping was performed using the buccal mucosa from 150 normal and 150 ECC children. For genotype and allele distribution comparison, Chi-square test and multiple logistic regression analysis were performed. The odd ratio (OR) and 95% confidence interval (CI) were calculated. MTR gene rs1805087 AG genotype distribution in the ECC group was clearly different from the control group (P = 0.029), and the ECC risk in cases with AG genotype was 0.525 times lower than those carrying AA genotype (95% CI = 0.292-0.942). Logistic regression analysis after adjustment for other clinical indicators determined that the MTR gene rs1805087 AG genotype was still strongly associated with susceptibility to ECC (OR = 0.499, 95% CI = 0.273-0.913, P = 0.024). Significant association was also seen for sugary food intakes (OR = 1.965, 95% CI = 1.162-3.321, P = 0.012), tooth brushing (OR = 0.569, 95% CI = 0.356-0.924, P = 0.023) and sex (OR = 0.562, 95% CI = 0.349-0.907, P = 0.018) with ECC risk. No notable genetic association was found between MTRR gene rs1801394 polymorphism and ECC risk. MTR gene rs1805087 polymorphism may aggrandize the susceptibility to ECC, and AA genotype appeared to be a dangerous element for the development of ECC.


Asunto(s)
5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa , Caries Dental , Predisposición Genética a la Enfermedad , Niño , Preescolar , Femenino , Humanos , Masculino , 5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa/genética , Estudios de Casos y Controles , China , Caries Dental/genética , Pueblos del Este de Asia/genética , Frecuencia de los Genes/genética , Estudios de Asociación Genética , Modelos Logísticos , Oportunidad Relativa , Polimorfismo de Nucleótido Simple , Factores de Riesgo
4.
iScience ; 26(5): 106598, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37128610

RESUMEN

Nutrient acquisition is essential for animal cells. ßγ-CAT is a pore-forming protein (PFP) and trefoil factor complex assembled under tight regulation identified in toad Bombina maxima. Here, we reported that B. maxima cells secreted ßγ-CAT under glucose, glutamine, and pyruvate deficiency to scavenge extracellular proteins for their nutrient supply and survival. AMPK signaling positively regulated the expression and secretion of ßγ-CAT. The PFP complex selectively bound extracellular proteins and promoted proteins uptake through endolysosomal pathways. Elevated intracellular amino acids, enhanced ATP production, and eventually prolonged cell survival were observed in the presence of ßγ-CAT and extracellular proteins. Liposome assays indicated that high concentration of ATP negatively regulated the opening of ßγ-CAT channels. Collectively, these results uncovered that ßγ-CAT is an essential element in cell nutrient scavenging under cell nutrient deficiency by driving vesicular uptake of extracellular proteins, providing a new paradigm for PFPs in cell nutrient acquisition and metabolic flexibility.

5.
J Biol Chem ; 299(6): 104717, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37068610

RESUMEN

Cell membranes form barriers for molecule exchange between the cytosol and the extracellular environments. ßγ-CAT, a complex of pore-forming protein BmALP1 (two ßγ-crystallin domains with an aerolysin pore-forming domain) and the trefoil factor BmTFF3, has been identified in toad Bombina maxima. It plays pivotal roles, via inducing channel formation in various intracellular or extracellular vesicles, as well as in nutrient acquisition, maintaining water balance, and antigen presentation. Thus, such a protein machine should be tightly regulated. Indeed, BmALP3 (a paralog of BmALP1) oxidizes BmALP1 to form a water-soluble polymer, leading to dissociation of the ßγ-CAT complex and loss of biological activity. Here, we found that the B. maxima IgG Fc-binding protein (FCGBP), a well-conserved vertebrate mucin-like protein with unknown functions, acted as a positive regulator for ßγ-CAT complex assembly. The interactions among FCGBP, BmALP1, and BmTFF3 were revealed by co-immunoprecipitation assays. Interestingly, FCGBP reversed the inhibitory effect of BmALP3 on the ßγ-CAT complex. Furthermore, FCGBP reduced BmALP1 polymers and facilitated the assembly of ßγ-CAT with the biological pore-forming activity in the presence of BmTFF3. Our findings define the role of FCGBP in mediating the assembly of a pore-forming protein machine evolved to drive cell vesicular delivery and transport.


Asunto(s)
Cristalinas , Péptidos , Animales , Péptidos/metabolismo , Piel/metabolismo , Anuros/metabolismo , Cristalinas/metabolismo , Porinas/metabolismo , Inmunoglobulina G/metabolismo
6.
FASEB J ; 36(10): e22533, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36065711

RESUMEN

During animal fasting, the nutrient supply and metabolism switch from carbohydrates to a new reliance on the catabolism of energy-dense lipid stores. Assembled under tight regulation, ßγ-CAT (a complex of non-lens ßγ-crystallin and trefoil factor) is a pore-forming protein and trefoil factor complex identified in toad Bombina maxima. Here, we determined that this protein complex is a constitutive component in toad blood, that actively responds to the animal fasting. The protein complex was able to promote cellular albumin and albumin-bound fatty acid (FA) uptake in a variety of epithelial and endothelial cells, and the effects were attenuated by a macropinocytosis inhibitor. Endothelial cell-derived exosomes containing largely enriched albumin and FAs, called nutrisomes, were released in the presence of ßγ-CAT. These specific nutrient vesicles were readily taken up by starved myoblast cells to support their survival. The results uncovered that pore-forming protein ßγ-CAT is a fasting responsive element able to drive cell vesicular import and export of macromolecular nutrients.


Asunto(s)
Células Endoteliales , Factores Trefoil , Albúminas/metabolismo , Animales , Células Endoteliales/metabolismo , Ayuno , Nutrientes , Péptidos/metabolismo , Piel/metabolismo , Factores Trefoil/metabolismo
8.
J Food Sci ; 86(12): 5385-5396, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34766339

RESUMEN

In this study, microemulsions were fabricated using tomato seed oil, water, Tween 80 and citric acid, and then the physicochemical characteristics and the influence of environmental stress were investigated. The physicochemical properties of the microemulsions were evaluated by transmission electron microscopy (TEM), mean particle diameter, polydispersity index (PDI) and conductivity. The phase diagrams of tomato seed oil/Tween 80/citric acid/water microemulsions were constructed under different pHs and ionic strengths. Storage stability of the systems was investigated at 4, 37 and 65°C, and changes in turbidity and lipid oxidation products were monitored. Nano-size zeta potential analyzer results demonstrated that the mean particle diameter and polydispersity index of tomato seed oil microemulsions were 14 nm and 0.014. The transition from W/O to O/W could be detected from electrical conductivity and viscosity data with the increasing of water content. The results showed that the microemulsion areas decreased with increasing pH and NaCl concentrations. What is more, the study proved that tomato seed oil microemulsions exhibited a good storage stability. PRACTICAL APPLICATION: In this study, the preparation of tomato seed oil microemulsion can not only make full use of the nutritional value of tomato seed oil, but also ensure the effective protection of the nutrients contained in it, and improve the problem of adding difficult. By using microemulsion as delivery carrier of tomato seed oil, the application of tomato seed oil in food, cosmetics and other fields could be enhanced. Therefore, the preparation of tomato seed oil microemulsion provides a theoretical basis for production practice.


Asunto(s)
Solanum lycopersicum , Aceites de Plantas
9.
FASEB J ; 34(10): 13609-13625, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32786030

RESUMEN

Bacterial pore-forming toxin aerolysin-like proteins are widely distributed in animals and plants. Emerging evidence supports their roles in host innate immunity, but their direct actions in adaptive immunity remain elusive. In this study, we found that ßγ-CAT, an aerolysin-like protein and trefoil factor complex identified in the frog Bombina maxima, modulated several steps of endocytic pathways during dendritic cell antigen presentation. The protein augmented the antigen uptake of dendritic cells and actively neutralized the acidification of cellular endocytic organelles to favor antigen presentation. In addition, the release of functional exosome-like extracellular vesicles was largely enhanced in the presence of ßγ-CAT. The cellular action of ßγ-CAT increased the number of major histocompatibility complex (MHC) I-ovalbumin and MHC II molecules on dendritic cell surfaces and the released exosome-like extracellular vesicles. An enhanced antigen presentation capacity of dendritic cell for priming of naive T cells was detected in the presence of ßγ-CAT. Collectively, these effects led to strong cytotoxic T lymphocyte responses and antigen-specific antibody responses. Our findings provide evidence that a vertebrate-secreted pore-forming protein can augment antigen presentation by directly modulating cellular endocytic and exocytic pathways, leading to robust activation of adaptive immunity.


Asunto(s)
Presentación de Antígeno/efectos de los fármacos , Células Dendríticas , Endosomas , Proteínas Citotóxicas Formadoras de Poros/farmacología , Linfocitos T , Inmunidad Adaptativa , Animales , Anuros/metabolismo , Células Cultivadas , Células Dendríticas/citología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Endosomas/efectos de los fármacos , Endosomas/inmunología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Linfocitos T/citología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología
10.
J Biol Chem ; 295(30): 10293-10306, 2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32499370

RESUMEN

Endolysosomes are key players in cell physiology, including molecular exchange, immunity, and environmental adaptation. They are the molecular targets of some pore-forming aerolysin-like proteins (ALPs) that are widely distributed in animals and plants and are functionally related to bacterial toxin aerolysins. ßγ-CAT is a complex of an ALP (BmALP1) and a trefoil factor (BmTFF3) in the firebelly toad (Bombina maxima). It is the first example of a secreted endogenous pore-forming protein that modulates the biochemical properties of endolysosomes by inducing pore formation in these intracellular vesicles. Here, using a large array of biochemical and cell biology methods, we report the identification of BmALP3, a paralog of BmALP1 that lacks membrane pore-forming capacity. We noted that both BmALP3 and BmALP1 contain a conserved cysteine in their C-terminal regions. BmALP3 was readily oxidized to a disulfide bond-linked homodimer, and this homodimer then oxidized BmALP1 via disulfide bond exchange, resulting in the dissociation of ßγ-CAT subunits and the elimination of biological activity. Consistent with its behavior in vitro, BmALP3 sensed environmental oxygen tension in vivo, leading to modulation of ßγ-CAT activity. Interestingly, we found that this C-terminal cysteine site is well conserved in numerous vertebrate ALPs. These findings uncover the existence of a regulatory ALP (BmALP3) that modulates the activity of an active ALP (BmALP1) in a redox-dependent manner, a property that differs from those of bacterial toxin aerolysins.


Asunto(s)
Proteínas Anfibias/química , Disulfuros/química , Proteínas Citotóxicas Formadoras de Poros/química , Multimerización de Proteína , Animales , Anuros , Oxidación-Reducción , Dominios Proteicos
11.
Commun Biol ; 2: 59, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30775460

RESUMEN

Bacterial pore-forming toxin aerolysin-like proteins (ALPs) are widely distributed in animals and plants. However, functional studies on these ALPs remain in their infancy. ßγ-CAT is the first example of a secreted pore-forming protein that functions to modulate the endolysosome pathway via endocytosis and pore formation on endolysosomes. However, the specific cell surface molecules mediating the action of ßγ-CAT remain elusive. Here, the actions of ßγ-CAT were largely attenuated by either addition or elimination of acidic glycosphingolipids (AGSLs). Further study revealed that the ALP and trefoil factor (TFF) subunits of ßγ-CAT bind to gangliosides and sulfatides, respectively. Additionally, disruption of lipid rafts largely impaired the actions of ßγ-CAT. Finally, the ability of ßγ-CAT to clear pathogens was attenuated in AGSL-eliminated frogs. These findings revealed a previously unknown double binding pattern of an animal-secreted ALP in complex with TFF that initiates ALP-induced endolysosomal pathway regulation, ultimately leading to effective antimicrobial responses.


Asunto(s)
Glicoesfingolípidos Acídicos/química , Proteínas Anfibias/inmunología , Toxinas Bacterianas/inmunología , Infecciones por Bacterias Gramnegativas/inmunología , Lisosomas/inmunología , Complejos Multiproteicos/inmunología , Proteínas Citotóxicas Formadoras de Poros/inmunología , Factor Trefoil-3/inmunología , Glicoesfingolípidos Acídicos/antagonistas & inhibidores , Glicoesfingolípidos Acídicos/biosíntesis , Aeromonas hydrophila/crecimiento & desarrollo , Aeromonas hydrophila/patogenicidad , Proteínas Anfibias/genética , Proteínas Anfibias/metabolismo , Animales , Anuros , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Ceramidas/antagonistas & inhibidores , Ceramidas/biosíntesis , Ceramidas/química , Cerebrósidos/antagonistas & inhibidores , Cerebrósidos/biosíntesis , Cerebrósidos/química , Gangliósidos/antagonistas & inhibidores , Gangliósidos/biosíntesis , Gangliósidos/química , Expresión Génica , Infecciones por Bacterias Gramnegativas/genética , Infecciones por Bacterias Gramnegativas/microbiología , Humanos , Interleucina-1beta/biosíntesis , Lisosomas/efectos de los fármacos , Lisosomas/microbiología , Microdominios de Membrana/efectos de los fármacos , Microdominios de Membrana/inmunología , Microdominios de Membrana/microbiología , Meperidina/análogos & derivados , Meperidina/farmacología , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Esfingosina/antagonistas & inhibidores , Esfingosina/biosíntesis , Esfingosina/química , Células THP-1 , Factor Trefoil-3/genética , Factor Trefoil-3/metabolismo
12.
FASEB J ; 33(1): 782-795, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30063438

RESUMEN

Tissue repair is a highly dynamic process, and the immediate onset of acute inflammation has been considered necessary for repair. Pore-forming proteins are important, both in pathogen invasion and host immunity. However, their roles in wound healing and tissue repair are unclear. ßγ-crystallin fused aerolysin-like protein (α-subunit) and trefoil factor (ß-subunit) complex (ßγ-CAT) is a complex of a bacterial pore-forming toxin aerolysin-like protein and trefoil factor identified in the frog Bombina maxima. In this study, we established mouse cutaneous wound models to explore the effects of ßγ-CAT on skin wound healing. ßγ-CAT accelerated the healing of full-thickness wounds by improving re-epithelialization. This complex relieved dermal edema and promoted scarless healing. ßγ-CAT treatment resulted in a rapid release of IL-1ß, which initiated an acute inflammation response in the early stage of healing. Meanwhile, the expression levels of TGF-ß1, VEGF, and bFGF and the recruitment of M2 macrophages around the wound significantly increased after ßγ-CAT treatment. ßγ-CAT protected skin wounds against methicillin-resistant Staphylococcus aureus by improving neutrophil recruitment at the site of the wound. Overall, our results suggest that ßγ-CAT can promote tissue repair and protect skin wounds against antibiotic-resistant bacterial infection by triggering the acute inflammatory response. This is the first example that aerolysin-like pore-forming proteins widely existing in plants and animals may act in wound healing and tissue repair.-Gao, Z.-H., Deng, C.-J., Xie, Y.-Y., Guo, X.-L., Wang, Q.-Q., Liu, L.-Z., Lee, W.-H., Li, S.-A., Zhang, Y. Pore-forming toxin-like protein complex expressed by frog promotes tissue repair.


Asunto(s)
Proteínas Citotóxicas Formadoras de Poros/metabolismo , Toxinas Biológicas/metabolismo , Cicatrización de Heridas , Animales , Anuros , Línea Celular , Colágeno/metabolismo , Cristalinas/metabolismo , Células Epiteliales/citología , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Fibroblastos/citología , Humanos , Interleucina-1beta/metabolismo , Macrófagos/citología , Masculino , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Ratones , Neutrófilos/citología , Conejos , Piel/lesiones , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/prevención & control , Factor de Crecimiento Transformador beta1/metabolismo , Factores Trefoil/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...