Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Anal Chem ; 95(46): 16840-16849, 2023 11 21.
Article En | MEDLINE | ID: mdl-37933954

Characterizing changes in the higher order structure (HOS) of monoclonal antibodies upon stressed conditions is critical to gaining a better understanding of the product and process. One single biophysical approach may not be best suited to assess HOS comprehensively; thus, the synergy from multiple, complementary approaches improves characterization accuracy and resolution. In this study, we employed two mass spectrometry (MS )-based footprinting techniques, namely, fast photochemical oxidation of proteins (FPOP)-MS and hydrogen-deuterium exchange (HDX)-MS, supported by dynamic light scattering (DLS), differential scanning calorimetry (DSC), circular dichroism (CD), and nuclear magnetic resonance (NMR) to study changes to the HOS of a mAb upon thermal stress. The biophysical techniques report a nuanced characterization of the HOS in which CD detects no changes to the secondary or tertiary structure, yet DLS measurements show an increase in the hydrodynamic radius. DSC indicates that the stability decreases, and chemical or conformational changes accumulate with incubation time according to NMR. Furthermore, whereas HDX-MS does not indicate HOS changes, FPOP-MS footprinting reveals conformational changes at residue resolution for some amino acids. The local phenomena observed with FPOP-MS indicate that several residues show various patterns of degradation during thermal stress: no change, an increase in solvent exposure, and a biphasic response to solvent exposure. All evidences show that FPOP-MS efficiently resolves subtle structural changes and novel degradation pathways upon thermal stress treatment at residue-level resolution.


Antibodies, Monoclonal , Hydrogen Deuterium Exchange-Mass Spectrometry , Antibodies, Monoclonal/chemistry , Mass Spectrometry/methods , Magnetic Resonance Imaging , Solvents , Protein Conformation
2.
J Pharm Sci ; 109(10): 3223-3230, 2020 10.
Article En | MEDLINE | ID: mdl-32758548

Protein higher order structure (HOS) is an important product quality attribute that governs the structure-function characteristics, safety, and efficacy of therapeutic proteins. Infrared (IR) spectroscopy has long been recognized as a powerful biophysical tool in determining protein secondary structure and monitoring the dynamic structural changes. Such biophysics analyses help establish process and product knowledge, understand the impact of upstream (cell culture) and downstream (purification) process conditions, create stable formulations, monitor product stability, and assess product comparability when process improvements are implemented (or establish biosimilarity to originator products). This paper provides an overview of a novel automated mid-IR spectroscopic technique called microfluidic modulation spectroscopy (MMS) for the characterization of protein secondary structure. The study demonstrates that MMS secondary structure analysis of therapeutic monoclonal antibodies (mAb) is comparable with a conventional Fourier transform infrared (FTIR) method. More importantly the study shows MMS exhibits higher sensitivity and repeatability for low concentration samples over FTIR, as well as provides automated operation and superior robustness with simplified data analysis, increasing the utility of the instrument in determination of mAb secondary structure. Therefore, we propose that the MMS method can be widely applied in characterization and comparability/biosimilarity studies for biopharmaceutical process and product development.


Antibodies, Monoclonal , Biosimilar Pharmaceuticals , Protein Structure, Secondary , Spectrophotometry, Infrared , Spectroscopy, Fourier Transform Infrared
3.
Pharm Res ; 36(9): 130, 2019 Jul 01.
Article En | MEDLINE | ID: mdl-31264003

PURPOSE: An understanding of higher order structure (HOS) of monoclonal antibodies (mAbs) could be critical to predicting its function. Amongst the various factors that can potentially affect HOS of mAbs, chemical modifications that are routinely encountered during production and long-term storage are of significant interest. METHODS: To this end, two Pfizer mAbs were subjected to forced deamidation stress for a period of eight weeks. Samples were aliquoted at various time points and high resolution accurate mass liquid chromatography-mass spectrometry (LC-MS/MS) was performed using low-artifact trypsin digestion (LATD) peptide mapping to identify and quantify chemical modifications. 2D backbone amide and sidechain methyl NMR spectra were acquired to gauge the effect of HOS changes upon chemical modification. Differential scanning calorimetry was also performed to assess the effect of thermal stability of mAbs upon modification. Finally, functional studies via target-binding based ELISA were performed to connect HOS changes to any loss of potency. RESULTS: The extent of deamidation in the mAb domains were quantified by LC-MS/MS. The HOS changes as obtained from 2D NMR were mostly localized around the affected sites leaving the overall structure relatively unchanged. The antigen-antibody binding of the mAbs, in spite of deamidation in the Fab region, remains unchanged. CONCLUSION: This case study provides an integrated approach of relating chemical modifications in mAb domains with possible changes in HOS. This can be potentially used to assess a possible loss of potency within the structure-function paradigm of proteins in an orthogonal manner.


Antibodies, Monoclonal/chemistry , Antigen-Antibody Complex/chemistry , Chromatography, High Pressure Liquid , Magnetic Resonance Imaging , Protein Binding , Protein Conformation , Tandem Mass Spectrometry
4.
J Biol Inorg Chem ; 12(2): 234-47, 2007 Feb.
Article En | MEDLINE | ID: mdl-17082919

Alpha-synuclein (alpha-syn) is the major protein component of the insoluble fibrils that make up Lewy bodies, the hallmark lesions of Parkinson's disease. Its C-terminal region contains motifs of charged amino acids that potentially bind metal ions, as well as several identified phosphorylation sites. We have investigated the metal-binding properties of synthetic model peptides and phosphopeptides that correspond to residues 119-132 of the C-terminal, polyacidic stretch of human alpha-syn, with the sequence Ac-Asp-Pro-Asp-Asn-Glu-Ala-Tyr-Glu-Met-Pro-Ser-Glu-Glu-Gly (alpha-syn119-132). The peptide pY125 replaces tyrosine with phosphotyrosine, whereas pS129 replaces serine with phosphoserine. By using Tb(3+) as a luminescent probe of metal binding, we find a marked selectivity of pY125 for Tb(3+) compared with pS129 and alpha-syn119-132, a result confirmed by isothermal titration calorimetry. Truncated or alanine-substituted peptides show that the phosphoester group on tyrosine provides a metal-binding anchor that is supplemented by carboxylic acid groups at positions 119, 121, and 126 to establish a multidentate ligand, while two glutamic acid residues at positions 130 and 131 contribute to binding additional Tb(3+) ions. The interaction of other metal ions was investigated by electrospray ionization mass spectrometry, which confirmed that pY125 is selective for trivalent metal ions over divalent metal ions, and revealed that Fe(3+) and Al(3+) induce peptide dimerization through metal ion cross-links. Circular dichroism showed that Fe(3+) can induce a partially folded structure for pY125, whereas no change was observed for pS129 or the unphosphorylated analog. The results of this study show that the type and location of a phosphorylated amino acid influence a peptide's metal-binding specificity and affinity as well as its overall conformation.


Lewy Bodies/chemistry , Metals/metabolism , Peptide Fragments/chemical synthesis , Peptide Fragments/metabolism , Phosphopeptides/metabolism , alpha-Synuclein/metabolism , Amino Acid Sequence , Binding Sites , Calorimetry/methods , Circular Dichroism/methods , Humans , Lewy Bodies/metabolism , Metals/chemistry , Parkinson Disease/metabolism , Phosphorylation , Spectrometry, Mass, Electrospray Ionization/methods , Structure-Activity Relationship , alpha-Synuclein/chemistry
5.
J Am Chem Soc ; 127(27): 9662-3, 2005 Jul 13.
Article En | MEDLINE | ID: mdl-15998051

By using Tb3+ as a luminescent probe, we demonstrate that the phosphorylation state of a 14-residue peptide fragment of alpha-synuclein, a protein implicated in Parkinson's Disease, dramatically affects the metal ion affinity of the peptide. Whereas the unphosphorylated peptide and its phosphoserine analogue show weak Tb3+ binding, its phosphotyrosine analogue shows tight 1:1 binding as well as 2:1 and 3:1 Tb:peptide adducts. Our data suggest that the phosphorylated amino acid must be appropriately positioned among additional ligating residues to establish this phosphorylation-dependent metal binding.


Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Terbium/metabolism , Amino Acid Sequence , Humans , Molecular Sequence Data , Phosphorylation , Phosphoserine/metabolism , Phosphotyrosine/metabolism , Spectrometry, Fluorescence , Synucleins , Titrimetry , alpha-Synuclein
...