Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Healthc Mater ; : e2400545, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38706444

RESUMEN

Early reconstruction of the vascular network is a prerequisite to the effective treatment of substantial bone defects. Traditional 3D printed tissue engineering scaffolds designed to repair large bone defects do not effectively regenerate the vascular network, and rely only on the porous structure within the scaffold for nutrient transfer and metabolic waste removal. This leads to delayed bone restoration and hence functional recovery. Therefore, strategies for generation scaffolds with the capacity to efficiently regenerate vascularization should be developed. This study loads roxarestat (RD), which can stabilize HIF-1α expression in a normoxic environment, onto the mesopore polydopamine nanoparticles (MPDA@RD) to enhance the reconstruction of vascular network in large bone defects. Subsequently, MPDA@RD is mixed with GelMA/HA hydrogel bioink to fabricate a multifunctional hydrogel scaffold (GHM@RD) through 3D printing. In vitro results show that the GHM@RD scaffolds achieve good angiogenic-osteogenic coupling by activating the PI3K/AKT/HSP90 pathway in BMSCs and the PI3K/AKT/HIF-1α pathway in HUVECs under mild thermotherapy. In vivo experiments reveal that RD and mild hyperthermia synergistically induce early vascularization and bone regeneration of critical bone defects. In conclusion, the designed GHM@RD drug delivery scaffold with mild hyperthermia holds great therapeutic value for future treatment of large bone defects.

2.
ACS Appl Mater Interfaces ; 16(19): 24351-24371, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38690969

RESUMEN

Chronic nonhealing wounds are serious complications of diabetes with a high morbidity, and they can lead to disability or death. Conventional drug therapy is ineffective for diabetic wound healing because of the complex environment of diabetic wounds and the depth of drug penetration. Here, we developed a self-healing, dual-layer, drug-carrying microneedle (SDDMN) for diabetic wound healing. This SDDMN can realize transdermal drug delivery and broad-spectrum sterilization without drug resistance and meets the multiple needs of the diabetic wound healing process. Quaternary ammonium chitosan cografted with dihydrocaffeic acid (Da) and l-arginine and oxidized hyaluronic acid-dopamine are the main parts of the self-healing hydrogel patch. Methacrylated poly(vinyl alcohol) (methacrylated PVA) and phenylboronic acid (PBA) were used as the main part of the MN, and gallium porphyrin modified with 3-amino-1,2 propanediol (POGa) and insulin were encapsulated at its tip. Under hyperglycaemic conditions, the PBA moiety in the MN reversibly formed a glucose-boronic acid complex that promoted the rapid release of POGa and insulin. POGa is disguised as hemoglobin through a Trojan-horse strategy, which is then taken up by bacteria, allowing it to target bacteria and infected lesions. Based on the synergistic properties of these components, SDDMN-POGa patches exhibited an excellent biocompatibility, slow drug release, and antimicrobial properties. Thus, these patches provide a potential therapeutic approach for the treatment of diabetic wounds.


Asunto(s)
Ácidos Borónicos , Diabetes Mellitus Experimental , Glucosa , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Animales , Ácidos Borónicos/química , Glucosa/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Agujas , Insulina/administración & dosificación , Ratones , Quitosano/química , Alcohol Polivinílico/química , Ratas , Ácido Hialurónico/química , Masculino , Ácidos Cafeicos/química , Ácidos Cafeicos/farmacología , Sistemas de Liberación de Medicamentos , Ratas Sprague-Dawley , Humanos , Hidrogeles/química
3.
Adv Mater ; 36(30): e2405002, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38738270

RESUMEN

Owing to the increased tissue iron accumulation in patients with diabetes, microorganisms may activate high expression of iron-involved metabolic pathways, leading to the exacerbation of bacterial infections and disruption of systemic glucose metabolism. Therefore, an on-demand transdermal dosing approach that utilizes iron homeostasis regulation to combat antimicrobial resistance is a promising strategy to address the challenges associated with low administration bioavailability and high antibiotic resistance in treating infected diabetic wounds. Here, it is aimed to propose an effective therapy based on hemoglobin bionics to induce disturbances in bacterial iron homeostasis. The preferred "iron cargo" is synthesized by protoporphyrin IX chelated with dopamine and gallium (PDGa), and is delivered via a glucose/pH-responsive microneedle bandage (PDGa@GMB). The PDGa@GMB downregulates the expression levels of the iron uptake regulator (Fur) and the peroxide response regulator (perR) in Staphylococcus aureus, leading to iron nutrient starvation and oxidative stress, ultimately suppressing iron-dependent bacterial activities. Consequently, PDGa@GMB demonstrates insusceptibility to genetic resistance while maintaining sustainable antimicrobial effects (>90%) against resistant strains of both S. aureus and E. coli, and accelerates tissue recovery (<20 d). Overall, PDGa@GMB not only counteracts antibiotic resistance but also holds tremendous potential in mediating microbial-host crosstalk, synergistically attenuating pathogen virulence and pathogenicity.


Asunto(s)
Antibacterianos , Escherichia coli , Galio , Homeostasis , Hierro , Staphylococcus aureus , Hierro/metabolismo , Hierro/química , Galio/química , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/uso terapéutico , Animales , Escherichia coli/efectos de los fármacos , Hemoglobinas/metabolismo , Protoporfirinas/química , Protoporfirinas/farmacología , Protoporfirinas/uso terapéutico , Humanos , Dopamina/metabolismo , Farmacorresistencia Microbiana/efectos de los fármacos , Ratones , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/metabolismo
4.
ACS Appl Mater Interfaces ; 16(20): 25757-25772, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38738757

RESUMEN

The development of therapeutics with high antimicrobial activity and immunomodulatory effects is urgently needed for the treatment of infected wounds due to the increasing danger posed by recalcitrant-infected wounds. In this study, we developed light-controlled antibacterial, photothermal, and immunomodulatory biomimetic N/hPDA@M nanoparticles (NPs). This nanoplatform was developed by loading flavonoid naringenin onto hollow mesoporous polydopamine NPs in a π-π-stacked configuration and encasing them with macrophage membranes. First, our N/hPDA@M NPs efficiently neutralized inflammatory factors present within the wound microenvironment by the integration of macrophage membranes. Afterward, the N/hPDA@M NPs effectively dismantled bacterial biofilms through a combination of the photothermal properties of PDA and the quorum sensing inhibitory effects of naringenin. It is worth noting that N/hPDA@M NPs near-infrared-enhanced release of naringenin exhibited specificity toward the NF-κB-signaling pathway, effectively mitigating the inflammatory response. This innovative design not only conferred remarkable antibacterial properties upon the N/hPDA@M NPs but also endowed them with the capacity to modulate inflammatory responses, curbing excessive inflammation and steering macrophage polarization toward the M2 phenotype. As a result, this multifaceted approach significantly contributes to expediting the healing process of infected skin wounds.


Asunto(s)
Antibacterianos , Biopelículas , FN-kappa B , Nanopartículas , Percepción de Quorum , Cicatrización de Heridas , Animales , Humanos , Ratones , Antibacterianos/química , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Flavanonas/química , Flavanonas/farmacología , Agentes Inmunomoduladores/química , Agentes Inmunomoduladores/farmacología , Indoles/química , Indoles/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Nanopartículas/química , Nanopartículas/uso terapéutico , FN-kappa B/metabolismo , Polímeros/química , Polímeros/farmacología , Percepción de Quorum/efectos de los fármacos , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología , Cicatrización de Heridas/efectos de los fármacos , Infección de Heridas/tratamiento farmacológico
5.
ACS Appl Mater Interfaces ; 15(46): 53283-53296, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37948751

RESUMEN

Probiotic therapy in infected wound healing is hindered by its low viability and colonization efficiency during treatments. Developing dressings that maintain metabolic activity and prevent the potential leakage of probiotics is imperative. Herein, a culture-delivery live probiotics hydrogel dressing is designed and synthesized, formed by gelatin modified with norbornene (GelNB) and sulfhydryl (GelSH), distributing Lactobacillus reuteri (L. reuteri)-laden alginate microspheres (AlgMPs). GelNB-GelSH hydrogel (GelNBSH) incorporating AlgMPs embedding L. reuteri (GelNBSH-L) possesses bioprintability and efficient polymerization that can maintain the activity of L. reuteri in situ, promote its proliferation, and limit its leakage. Thereby, GelNBSH-L achieved a sustainable antimicrobial effect against both S. aureus and E. coli (>90%). Above all, the results show that GelNBSH-L could ensure propitious viability and efficient antibacterial properties of probiotics, effectively inhibit the further development of bacterial infectious wounds and shorten the repair cycle, aiding in ameliorating future clinical probiotic biotherapy.


Asunto(s)
Limosilactobacillus reuteri , Probióticos , Staphylococcus aureus , Escherichia coli , Vendajes , Antibacterianos/farmacología , Hidrogeles/farmacología , Cicatrización de Heridas , Probióticos/farmacología , Probióticos/uso terapéutico
6.
Int J Nanomedicine ; 18: 6563-6584, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38026531

RESUMEN

Antibiotics are the most commonly used means to treat bacterial infection at present, but the unreasonable use of antibiotics induces the generation of drug-resistant bacteria, which causes great problems for their clinical application. In recent years, researchers have found that nanomaterials with high specific surface area, special structure, photocatalytic activity and other properties show great potential in bacterial infection control. Among them, black phosphorus (BP), a two-dimensional (2D) nanomaterial, has been widely reported in the treatment of tumor and bone defect due to its excellent biocompatibility and degradability. However, the current theory about the antibacterial properties of BP is still insufficient, and the relevant mechanism of action needs to be further studied. In this paper, we introduced the structure and properties of BP, elaborated the mechanism of BP in bacterial infection, and systematically reviewed the application of BP composite materials in the field of antibacterial. At the same time, we also discussed the challenges faced by the current research and application of BP, which laid a solid theoretical foundation for the further study of BP in the future.


Asunto(s)
Infecciones Bacterianas , Nanoestructuras , Humanos , Fósforo/química , Nanoestructuras/química , Infecciones Bacterianas/tratamiento farmacológico , Bacterias , Antibacterianos/química
7.
Nanoscale ; 15(34): 14189-14204, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37593970

RESUMEN

Nanofibrous scaffolds, which are morphologically/structurally similar to native extracellular matrix, are ideal biomaterials for tissue engineering and regenerative medicine. However, the use of traditional electrospinning techniques to produce three-dimensional (3D) nanofibrous scaffolds with desired structural properties presents difficulty. To address this challenge, we prepared a novel liquid-phase-collected photoinitiated polymerised aerogel 3D scaffold (LPPI-AG) using the thermally induced (nanofiber) self-aggregation method after liquid-phase electrospinning of the hydroxyapatite-doped methacrylated polyvinyl alcohol/methacrylated gelatine solution obtained by photoinitiated polymerisation. The fabricated aerogel scaffolds had a high porosity of approximately 99.01% ± 0.40% and an interconnected network structure with pore sizes ranging from submicron to ∼300 µm. The new aerogel rapidly became flowable when exposed to a solution, and it can fill gaps and repair gap edges effectively and be loaded with nutrients and growth factors that promote bone growth for bone tissue engineering. LPPI-AG scaffolds can considerably promote osteogenic differentiation of bone marrow mesenchymal stem cells in vitro. Furthermore, in vivo studies showed that the LPPI-AG scaffold significantly promoted bone formation in a mouse model of critical-size calvarial defects.


Asunto(s)
Regeneración Ósea , Osteogénesis , Animales , Ratones , Materiales Biocompatibles , Huesos , Diferenciación Celular
8.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37175732

RESUMEN

The process of repairing significant bone defects requires the recruitment of a considerable number of cells for osteogenesis-related activities, which implies the consumption of a substantial amount of oxygen and nutrients. Therefore, the limited supply of nutrients and oxygen at the defect site is a vital constraint that affects the regenerative effect, which is closely related to the degree of a well-established vascular network. Hypoxia-inducible factor (HIF-1α), which is an essential transcription factor activated in hypoxic environments, plays a vital role in vascular network construction. HIF-1α, which plays a central role in regulating cartilage and bone formation, induces vascular invasion and differentiation of osteoprogenitor cells to promote and maintain extracellular matrix production by mediating the adaptive response of cells to changes in oxygen levels. However, the application of HIF-1α in bone tissue engineering is still controversial. As such, clarifying the function of HIF-1α in regulating the bone regeneration process is one of the urgent issues that need to be addressed. This review provides insight into the mechanisms of HIF-1α action in bone regeneration and related recent advances. It also describes current strategies for applying hypoxia induction and hypoxia mimicry in bone tissue engineering, providing theoretical support for the use of HIF-1α in establishing a novel and feasible bone repair strategy in clinical settings.


Asunto(s)
Regeneración Ósea , Huesos , Subunidad alfa del Factor 1 Inducible por Hipoxia , Ingeniería de Tejidos , Humanos , Regeneración Ósea/genética , Regeneración Ósea/fisiología , Hipoxia , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Oxígeno
9.
Front Bioeng Biotechnol ; 11: 1018012, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36911184

RESUMEN

Periodontitis is a chronic inflammatory condition triggered by oral bacteria. A sustained inflammatory state in periodontitis could eventually destroy the alveolar bone. The key objective of periodontal therapy is to terminate the inflammatory process and reconstruct the periodontal tissues. The traditional Guided tissue regeneration (GTR) procedure has unstable results due to multiple factors such as the inflammatory environment, the immune response caused by the implant, and the operator's technique. Low-intensity pulsed ultrasound (LIPUS), as acoustic energy, transmits the mechanical signals to the target tissue to provide non-invasive physical stimulation. LIPUS has positive effects in promoting bone regeneration, soft-tissue regeneration, inflammation inhibition, and neuromodulation. LIPUS can maintain and regenerate alveolar bone during an inflammatory state by suppressing the expression of inflammatory factors. LIPUS also affects the cellular behavior of periodontal ligament cells (PDLCs), thereby protecting the regenerative potential of bone tissue in an inflammatory state. However, the underlying mechanisms of the LIPUS therapy are still yet to be summarized. The goal of this review is to outline the potential cellular and molecular mechanisms of periodontitis-related LIPUS therapy, as well as to explain how LIPUS manages to transmit mechanical stimulation into the signaling pathway to achieve inflammatory control and periodontal bone regeneration.

10.
Int J Mol Sci ; 24(3)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36768980

RESUMEN

Bone tissue engineering (BTE) utilizes a special mix of scaffolds, cells, and bioactive factors to regulate the microenvironment of bone regeneration and form a three-dimensional bone simulation structure to regenerate bone tissue. Silk fibroin (SF) is perhaps the most encouraging material for BTE given its tunable mechanical properties, controllable biodegradability, and excellent biocompatibility. Numerous studies have confirmed the significance of SF for stimulating bone formation. In this review, we start by introducing the structure and characteristics of SF. After that, the immunological mechanism of SF for osteogenesis is summarized, and various forms of SF biomaterials and the latest development prospects of SF in BTE are emphatically introduced. Biomaterials based on SF have great potential in bone tissue engineering, and this review will serve as a resource for future design and research.


Asunto(s)
Materiales Biocompatibles , Fibroínas , Materiales Biocompatibles/química , Ingeniería de Tejidos/métodos , Fibroínas/química , Andamios del Tejido/química , Huesos , Osteogénesis , Seda/química
11.
Nano Lett ; 22(23): 9723-9731, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36459114

RESUMEN

Strontium-containing agents have been demonstrated to elicit both bone anabolic and antiosteoporotic effects, showing great potential for the treatment of bone loss. However, an increased incidence of strontium-induced side effects restricts their clinical applications. Herein, oxidized carbon nitride nanosheets (CN) are delicately used to incorporate Sr2+ for the first time to achieve high osteogenic efficacy. The lamellar structure and enriched nitrogen species of CN provide them with a high surface area-to-volume ratio and abundant anchoring sites for Sr2+ incorporation. Importantly, Sr2+-incorporated CN (CNS) could synergistically promote osteoblast differentiation and bone regeneration at a single, very low Sr2+ dose. Mechanically, CNS could activate the FAK/RhoA signaling pathway to modulate the intracellular tension that stimulates osteoblasts differentiation. The present study will provide a new paradigm to enhance the efficacy of osteogenic metal ions by using lamellar nanocarriers.


Asunto(s)
Regeneración Ósea , Estroncio , Estroncio/farmacología , Osteogénesis , Huesos
12.
Nano Lett ; 22(10): 3904-3913, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35522592

RESUMEN

Physiological microenvironment engineering has shown great promise in combating a variety of diseases. Herein, we present the rational design of reinforced and injectable blood-derived protein hydrogels (PDA@SiO2-PRF) composed of platelet-rich fibrin (PRF), polydopamine (PDA), and SiO2 nanofibers that can act as dual-level regulators to engineer the microenvironment for personalized bone regeneration with high efficacy. From the biophysical level, PDA@SiO2-PRF with high stiffness can withstand the external loading and maintaining the space for bone regeneration in bone defects. Particularly, the reinforced structure of PDA@SiO2-PRF provides bone extracellular matrix (ECM)-like functions to stimulate osteoblast differentiation via Yes-associated protein (YAP) signaling pathway. From the biochemical level, the PDA component in PDA@SiO2-PRF hinders the fast degradation of PRF to release autologous growth factors in a sustained manner, providing sustained osteogenesis capacity. Overall, the present study offers a dual-level strategy for personalized bone regeneration by engineering the biophysiochemical microenvironment to realize enhanced osteogenesis efficacy.


Asunto(s)
Hidrogeles , Fibrina Rica en Plaquetas , Regeneración Ósea , Osteogénesis , Fibrina Rica en Plaquetas/metabolismo , Dióxido de Silicio/metabolismo
13.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 34(9): 1190-1194, 2020 Sep 15.
Artículo en Chino | MEDLINE | ID: mdl-32929915

RESUMEN

OBJECTIVE: To summarize the application status of hypoxia mimetic agents in bone tissue engineering. METHODS: The related literature about the hypoxia mimetic agents in bone tissue engineering was reviewed and analyzed. And the application status and progress of hypoxia mimetic agents in bone tissue engineering were retrospectively analyzed. RESULTS: Hypoxia mimetic agents have the same effect as hypoxia in up-regulating the level of hypoxia inducible factor 1α (HIF-1α). The combination of hypoxia mimetic agents and scaffolds can up-regulate the level of HIF-1α in bone tissue engineering, thus promoting early vascularization and bone regeneration of the bone defect area, which provides a new idea for using bone tissue engineering to repair bone defect. At present, the commonly used hypoxia mimetic agents include iron chelating agents, oxoglutarate competitive analogues, proline hydroxylase inhibitors, etc. CONCLUSION: Hypoxia mimetic agents have a wide application prospect in bone tissue engineering, but they have been used in bone tissue engineering for a short time, more attention should be paid to their possible side effects. In the future research, the hypoxia mimetic agents should be developed in the direction of higher targeting specificity and safety, and the exact mechanism of hypoxia mimetic agents in promoting bone regeneration should be further explored.


Asunto(s)
Huesos , Ingeniería de Tejidos , Regeneración Ósea , Humanos , Hipoxia , Subunidad alfa del Factor 1 Inducible por Hipoxia , Estudios Retrospectivos
14.
Biomed Res Int ; 2019: 3295756, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31886202

RESUMEN

Platelet-rich fibrin (PRF) is an autologous platelet concentrate that consists of cytokines, platelets, leukocytes, and circulating stem cells. It has been considered to be effective in bone regeneration and is mainly used for oral and maxillofacial bone. Although currently the use of PRF is thought to support alveolar ridge preservation, there is a lack of evidence regarding the application of PRF in osteogenesis. In this paper, we will provide examples of PRF application, and we will also summarize different measures to improve the properties of PRF for achieving better osteogenesis. The effect of PRF as a bone graft material on osteogenesis based on laboratory investigations, animal tests, and clinical evaluations is first reviewed here. In vitro, PRF was able to stimulate cell proliferation, differentiation, migration, mineralization, and osteogenesis-related gene expression. Preclinical and clinical trials suggested that PRF alone may have a limited effect. To enlighten researchers, modified PRF graft materials are further reviewed, including PRF combined with other bone graft materials, PRF combined with drugs, and a new-type PRF. Finally, we will summarize the common shortcomings in the application of PRF that probably lead to application failure. Future scientists should avoid or solve these problems to achieve better regeneration.


Asunto(s)
Proceso Alveolar , Regeneración Ósea/efectos de los fármacos , Trasplante Óseo , Procedimientos Quirúrgicos Orales , Osteogénesis/efectos de los fármacos , Fibrina Rica en Plaquetas , Proceso Alveolar/metabolismo , Proceso Alveolar/patología , Proceso Alveolar/cirugía , Animales , Trasplante Óseo/clasificación , Trasplante Óseo/métodos , Humanos , Procedimientos Quirúrgicos Orales/clasificación , Procedimientos Quirúrgicos Orales/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA