Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ArXiv ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38827458

RESUMEN

Human brain function dynamically adjusts to ever-changing stimuli from the external environment. Studies characterizing brain functional reconfiguration are nevertheless scarce. Here we present a principled mathematical framework to quantify brain functional reconfiguration when engaging and disengaging from a stop signal task (SST). We apply tangent space projection (a Riemannian geometry mapping technique) to transform functional connectomes (FCs) and quantify functional reconfiguration using the correlation distance of the resulting tangent-FCs. Our goal was to compare functional reconfigurations in individuals at risk for alcohol use disorder (AUD). We hypothesized that functional reconfigurations when transitioning in/from a task would be influenced by family history of alcohol use disorder (FHA) and other AUD risk factors. Multilinear regression model results showed that engaging and disengaging functional reconfiguration were driven by different AUD risk factors. Functional reconfiguration when engaging in the SST was negatively associated with recent drinking. When disengaging from the SST, however, functional reconfiguration was negatively associated with FHA. In both models, several other factors contributed to the explanation of functional reconfiguration. This study demonstrates that tangent-FCs can characterize task-induced functional reconfiguration, and that it is related to AUD risk.

2.
iScience ; 26(9): 107624, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37694156

RESUMEN

Functional connectomes (FCs) containing pairwise estimations of functional couplings between pairs of brain regions are commonly represented by correlation matrices. As symmetric positive definite matrices, FCs can be transformed via tangent space projections, resulting into tangent-FCs. Tangent-FCs have led to more accurate models predicting brain conditions or aging. Motivated by the fact that tangent-FCs seem to be better biomarkers than FCs, we hypothesized that tangent-FCs have also a higher fingerprint. We explored the effects of six factors: fMRI condition, scan length, parcellation granularity, reference matrix, main-diagonal regularization, and distance metric. Our results showed that identification rates are systematically higher when using tangent-FCs across the "fingerprint gradient" (here including test-retest, monozygotic and dizygotic twins). Highest identification rates were achieved when minimally (0.01) regularizing FCs while performing tangent space projection using Riemann reference matrix and using correlation distance to compare the resulting tangent-FCs. Such configuration was validated in a second dataset (resting-state).

3.
Brain Connect ; 11(5): 333-348, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33470164

RESUMEN

Background: Functional connectomes (FCs) have been shown to provide a reproducible individual fingerprint, which has opened the possibility of personalized medicine for neuro/psychiatric disorders. Thus, developing accurate ways to compare FCs is essential to establish associations with behavior and/or cognition at the individual level. Methods: Canonically, FCs are compared using Pearson's correlation coefficient of the entire functional connectivity profiles. Recently, it has been proposed that the use of geodesic distance is a more accurate way of comparing FCs, one which reflects the underlying non-Euclidean geometry of the data. Computing geodesic distance requires FCs to be positive-definite and hence invertible matrices. As this requirement depends on the functional magnetic resonance imaging scanning length and the parcellation used, it is not always attainable and sometimes a regularization procedure is required. Results: In the present work, we show that regularization is not only an algebraic operation for making FCs invertible, but also that an optimal magnitude of regularization leads to systematically higher fingerprints. We also show evidence that optimal regularization is data set-dependent and varies as a function of condition, parcellation, scanning length, and the number of frames used to compute the FCs. Discussion: We demonstrate that a universally fixed regularization does not fully uncover the potential of geodesic distance on individual fingerprinting and indeed could severely diminish it. Thus, an optimal regularization must be estimated on each data set to uncover the most differentiable across-subject and reproducible within-subject geodesic distances between FCs. The resulting pairwise geodesic distances at the optimal regularization level constitute a very reliable quantification of differences between subjects.


Asunto(s)
Conectoma , Encéfalo/diagnóstico por imagen , Cognición , Humanos , Imagen por Resonancia Magnética
4.
Neuroimage ; 221: 117181, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32702487

RESUMEN

It has been well established that Functional Connectomes (FCs), as estimated from functional MRI (fMRI) data, have an individual fingerprint that can be used to identify an individual from a population (subject-identification). Although identification rate is high when using resting-state FCs, other tasks show moderate to low values. Furthermore, identification rate is task-dependent, and is low when distinct cognitive states, as captured by different fMRI tasks, are compared. Here we propose an embedding framework, GEFF (Graph Embedding for Functional Fingerprinting), based on group-level decomposition of FCs into eigenvectors. GEFF creates an eigenspace representation of a group of subjects using one or more task FCs (Learning Stage). In the Identification Stage, we compare new instances of FCs from the Learning subjects within this eigenspace (validation dataset). The validation dataset contains FCs either from the same tasks as the Learning dataset or from the remaining tasks that were not included in Learning. Assessment of validation FCs within the eigenspace results in significantly increased subject-identification rates for all fMRI tasks tested and potentially task-independent fingerprinting process. It is noteworthy that combining resting-state with one fMRI task for GEFF Learning Stage covers most of the cognitive space for subject identification. Thus, while designing an experiment, one could choose a task fMRI to ask a specific question and combine it with resting-state fMRI to extract maximum subject differentiability using GEFF. In addition to subject-identification, GEFF was also used for identification of cognitive states, i.e. to identify the task associated to a given FC, regardless of the subject being already in the Learning dataset or not (subject-independent task-identification). In addition, we also show that eigenvectors from the Learning Stage can be characterized as task- and subject-dominant, subject-dominant or neither, using two-way ANOVA of their corresponding loadings, providing a deeper insight into the extent of variance in functional connectivity across individuals and cognitive states.


Asunto(s)
Encéfalo/fisiología , Cognición/fisiología , Conectoma/métodos , Imagen por Resonancia Magnética/métodos , Modelos Teóricos , Adulto , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...