Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 18 de 18
1.
Adv Mater ; : e2401192, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38848578

Decarbonizing food production and mitigating agriculture's environmental impact require new technologies for precise delivery of fertilizers and pesticides to plants. The cuticle, a waxy barrier that protects the surface of leaves, causes 60%-90% runoff of fertilizers and pesticides, leading to the wastage of intensive resources, soil depletion, and water bodies pollution. Solutions to mitigate runoff include adding chemicals (e.g., surfactants) to decrease surface tension and enhance cuticles' permeability but have low efficacy. In this study, vapor-induced synergistic differentiation (VISDi) is used to nanomanufacture echinate pollen-like, high payload content (≈50 wt%) microcapsules decorated with robust spines that mechanically disrupt the cuticle and adhere to the leaf. VISDi induces a core-shell structure in the spines, enabling the release of agrochemicals from the microparticles' body into the leaf. As proof of concept, precise and highthroughput delivery of iron fertilizer in Fe-deficient spinach plants is demonstrated. Spray of spiny microparticles improves leaf adhesion by mechanical interlocking, reduces wash-off by an ≈12.5 fold, and enhances chlorophyll content by ≈7.3 times compared to the application of spherical counterparts. Together, these results show that spiny microparticles can mitigate agricultural runoff and provide a high-throughput tool for precise plant drug delivery.

2.
Lipids Health Dis ; 23(1): 147, 2024 May 17.
Article En | MEDLINE | ID: mdl-38760818

BACKGROUND: Omega-3 polyunsaturated fatty acids (omega-3 PUFAs) exhibit potential as therapeutics for a variety of diseases. This observational and Mendelian randomization (MR) study aims to explore the relationship between omega-3 PUFAs and osteoarthritis (OA). METHODS: Excluding individuals under 20 years old and those with missing data on relevant variables in the National Health and Nutrition Examination Survey (NHANES) spanning from 2003 to 2016, a total of 22 834 participants were included in this cross-sectional study. Weighted multivariable-adjusted logistic regression was used to estimate the association between omega-3 PUFAs and OA in adults. Moreover, restricted cubic splines were utilized to examine the dose-response relationship between omega-3 PUFAs and OA. To further investigate the potential causal relationship between omega-3 PUFAs and OA risk, a two-sample MR study was conducted. Furthermore, the robustness of the findings was assessed using various methods. RESULTS: Omega-3 PUFAs intake were inversely associated with OA in adults aged 40 ∼ 59 after multivariable adjustment [Formula: see text], with a nonlinear relationship observed between omega-3 PUFAs intake and OA [Formula: see text]. The IVW results showed there was no evidence to suggest a causal relationship between omega-3 PUFAs and OA risk [Formula: see text]. CONCLUSIONS: Omega-3 PUFAs were inversely associated with OA in adults aged 40 ∼ 59. However, MR studies did not confirm a causal relationship between the two.


Fatty Acids, Omega-3 , Mendelian Randomization Analysis , Nutrition Surveys , Osteoarthritis , Humans , Osteoarthritis/genetics , Osteoarthritis/epidemiology , Fatty Acids, Omega-3/administration & dosage , Male , Middle Aged , Female , Adult , Cross-Sectional Studies , Risk Factors
3.
Small ; 18(31): e2201487, 2022 08.
Article En | MEDLINE | ID: mdl-35802906

There is a compelling need across several industries to substitute non-degradable, intentionally added microplastics with biodegradable alternatives. Nonetheless, stringent performance criteria in actives' controlled release and manufacturing at scale of emerging materials hinder the replacement of polymers used for microplastics fabrication with circular ones. Here, the authors demonstrate that active microencapsulation in a structural protein such as silk fibroin can be achieved by modulating protein protonation and chain relaxation at the point of material assembly. Silk fibroin micelles' size is tuned from several to hundreds of nanometers, enabling the manufacturing-by retrofitting spray drying and spray freeze drying techniques-of microcapsules with tunable morphology and structure, that is, hollow-spongy, hollow-smooth, hollow crumpled matrices, and hollow crumpled multi-domain. Microcapsules degradation kinetics and sustained release of soluble and insoluble payloads typically used in cosmetic and agriculture applications are controlled by modulating fibroin's beta-sheet content from 20% to near 40%. Ultraviolet-visible studies indicate that burst release of a commonly used herbicide (i.e., saflufenacil) significantly decreases from 25% to 0.8% via silk fibroin microencapsulation. As a proof-of-concept for agrochemicals applications, a 6-day greenhouse trial demonstrates that saflufenacil delivered on corn plants via silk microcapsules reduces crop injury when compared to the non-encapsulated version.


Fibroins , Silk , Capsules , Fibroins/chemistry , Microplastics , Plastics , Silk/chemistry
5.
ACS Nano ; 15(12): 20105-20115, 2021 Dec 28.
Article En | MEDLINE | ID: mdl-34870425

Solution co-deposition of two-dimensional (2D) nanosheets with chemical solutes yields nanosheet-molecular heterostructures. A feature of these macroscopic layered hybrids is their ability to release the intercalated molecular agent to express chemical functionality on their surfaces or in their near surroundings. Systematic design methods are needed to control this molecular release to match the demand for rate and lifetime in specific applications. We hypothesize that release kinetics are controlled by transport processes within the layered solids, which primarily involve confined molecular diffusion through nanochannels formed by intersheet van der Waals gaps. Here a variety of graphene oxide (GO)/molecular hybrids are fabricated and subject to transient experiments to characterize release kinetics, locations, and mechanisms. The measured release rate profiles can be successfully described by a numerical model of internal transport processes, and the results used to extract effective Z-directional diffusion coefficients for various film types. The diffusion coefficients are found to be 8 orders of magnitude lower than those in free solution due to nanochannel confinement and serpentine path effects, and this retardation underlies the ability of 2D materials to control and extend release over useful time scales. In-plane texturing of the heterostructured films by compressive wrinkling or crumpling is shown to be a useful design tool to control the release rate for a given film type and molecular intercalant. The potential of this approach is demonstrated through case studies on the controlled release of chemical virucidal agents.

6.
J Pept Sci ; 27(9): e3333, 2021 Sep.
Article En | MEDLINE | ID: mdl-34114290

Interactions between charged amino acids significantly influence the structure and function of proteins. The encoded charged amino acids Asp, Glu, Arg, and Lys have different number of hydrophobic methylenes linking the backbone to the charged functionality. It remains to be fully understood how does this difference in the number of methylenes affect protein structure stability. Protein secondary structures are the fundamental three-dimensional building blocks of protein structures. ß-Sheet structures are particularly interesting, because these structures have been associated with a number of protein misfolding diseases. Herein, we report the effect of charged amino acid side chain length at two ß-strand positions individually on the stability of a ß-hairpin. The charged amino acids include side chains with a carboxylate, an ammonium, or a guanidinium group. The experimental peptides, fully folded reference peptides, and fully unfolded reference peptides were synthesized by solid phase peptide synthesis and analyzed by 2D NMR methods including TOCSY, DQF-COSY, and ROESY. Sequence specific assignments were performed for all peptides. The chemical shift data were used to derive the fraction folded population and the folding free energy for the experimental peptides. Results showed that the fraction folded population increased with increasing charged amino acid side chain length. These results should be useful for developing functional peptides that adopt the ß-conformation.


Amino Acids , Peptides , Protein Conformation, beta-Strand , Protein Folding , Protein Structure, Secondary , Thermodynamics
7.
Carbon N Y ; 174: 227-239, 2021 Apr 15.
Article En | MEDLINE | ID: mdl-33633411

Thermal exfoliation is an efficient and scalable method for the production of graphene nanosheets or nanoplatelets, which are typically re-assembled or blended to form new macroscopic "graphene-based materials". Thermal exfoliation can be applied to these macroscopic graphene-based materials after casting to create internal porosity, but this process variant has not been widely studied, and can easily lead to destruction of the physical form of the original cast body. Here we explore how the partial thermal exfoliation of graphene oxide (GO) multilayer nanosheet films can be used to control pore structure and electrical conductivity of planar, textured, and confined GO films. The GO films are shown to exfoliate explosively when the instrument-set heating rates are 100 K/min and above leading to complete destruction of the film geometry. Textured films with engineered micro-wrinkling and crumpling show similar thermal behavior to planar films. Here, we also demonstrate a novel method to produce fairly large size intact rGO films of high electrical conductivity and microporosity based on confinement. Sandwiching GO precursor films between inert plates during partial exfoliation at 250°C produces high conductivity and porosity material in the form of a flexible film that preserves the macroscopic structure of the original cast body.

8.
Nat Commun ; 12(1): 507, 2021 01 21.
Article En | MEDLINE | ID: mdl-33479231

There is great interest in exploiting van der Waals gaps in layered materials as nanofluidic channels. Graphene oxide (GO) nanosheets are known to spontaneously assemble into stacked planar membranes with transport properties that are highly selective to molecular structure. Use of conventional GO membranes in liquid-phase applications is often limited by low flux values, due to intersheet nanochannel alignment perpendicular to the desired Z-directional transport, which leads to circuitous fluid pathways that are orders of magnitude longer than the membrane thickness. Here we demonstrate an approach that uses compressive instability in Zr-doped GO thin films to create wrinkle patterns that rotate nanosheets to high angles. Capturing this structure in polymer matrices and thin sectioning produce fully dense membranes with arrays of near-vertically aligned nanochannels. These robust nanofluidic devices offer pronounced reduction in fluid path-length, while retaining the high selectivity for water over non-polar molecules characteristic of GO interlayer nanochannels.


Graphite/chemistry , Membranes, Artificial , Microfluidic Analytical Techniques/methods , Nanostructures/chemistry , Nanotechnology/methods , Microfluidic Analytical Techniques/instrumentation , Nanotechnology/instrumentation , Polystyrenes/chemistry , Reproducibility of Results , Temperature , Water/chemistry
9.
Nanoscale Adv ; 3(3): 800-804, 2021 Feb 10.
Article En | MEDLINE | ID: mdl-36133841

There is widespread interest in new materials-based approaches for introducing flexibility to electromagnetic devices, such as displays, human-machine interfaces, smart textiles, and biomedical implants. From fabrication to application, incorporating ceramic components is particularly challenging due to their extreme stiffness. Here, we introduce a new approach for designing flexible ceramic films and demonstrate it by fabricating fully dense, pre-wrinkled magnetic cobalt ferrite films composed of tiled nanoplatelets. The method relies on the colloidal engineering of metalized graphene nanosheets, which are cast and compressed into wrinkled composite films with accurate control of composition and morphology. Removal of the graphene template by thermal oxidation yields free-standing cobalt ferrite films that can be stretched up to 200% and bent to radii of 2.5 mm while maintaining their magnetic properties. Magnetization retention of 73% is documented after 150% linear mechanical stretching over 100 cycles. The significant stretchability and flexibility in this hard magnetic material is achieved at near full metal oxide crystal density without addition of significant void space or a polymeric elastomer matrix.

10.
Small ; 16(21): e2000303, 2020 05.
Article En | MEDLINE | ID: mdl-32191401

Many layered crystal phases can be exfoliated or assembled into ultrathin 2D nanosheets with novel properties not achievable by particulate or fibrous nanoforms. Among these 2D materials are manganese dioxide (MnO2 ) nanosheets, which have applications in batteries, catalysts, and biomedical probes. A novel feature of MnO2 is its sensitivity to chemical reduction leading to dissolution and Mn2+ release. Biodissolution is critical for nanosafety assessment of 2D materials, but the timing and location of MnO2 biodissolution in environmental or occupational exposure scenarios are poorly understood. This work investigates the chemical and colloidal dynamics of MnO2 nanosheets in biological media for environmental and human health risk assessment. MnO2 nanosheets are insoluble in most aqueous phases, but react with strong and weak reducing agents in biological fluid environments. In vitro, reductive dissolution can be slow enough in cell culture media for MnO2 internalization by cells in the form of intact nanosheets, which localize in vacuoles, react to deplete intracellular glutathione, and induce cytotoxicity that is likely mediated by intracellular Mn2+ release. The results are used to classify MnO2 nanosheets within a new hazard screening framework for 2D materials, and the implications of MnO2 transformations for nanotoxicity testing and nanosafety assessment are discussed.


Manganese Compounds , Nanostructures , Oxides , Toxicity Tests , Animals , Cell Line , Cells/drug effects , Culture Media/chemistry , Environmental Exposure , Gills/cytology , Glutathione/metabolism , Humans , Manganese Compounds/chemistry , Nanostructures/chemistry , Nanostructures/toxicity , Occupational Exposure , Oncorhynchus mykiss , Oxides/chemistry , Oxides/toxicity , Risk Assessment , Toxicity Tests/methods , Toxicity Tests/standards
11.
Proc Natl Acad Sci U S A ; 116(37): 18304-18309, 2019 09 10.
Article En | MEDLINE | ID: mdl-31451645

Graphene-based materials are being developed for a variety of wearable technologies to provide advanced functions that include sensing; temperature regulation; chemical, mechanical, or radiative protection; or energy storage. We hypothesized that graphene films may also offer an additional unanticipated function: mosquito bite protection for light, fiber-based fabrics. Here, we investigate the fundamental interactions between graphene-based films and the globally important mosquito species, Aedes aegypti, through a combination of live mosquito experiments, needle penetration force measurements, and mathematical modeling of mechanical puncture phenomena. The results show that graphene or graphene oxide nanosheet films in the dry state are highly effective at suppressing mosquito biting behavior on live human skin. Surprisingly, behavioral assays indicate that the primary mechanism is not mechanical puncture resistance, but rather interference with host chemosensing. This interference is proposed to be a molecular barrier effect that prevents Aedes from detecting skin-associated molecular attractants trapped beneath the graphene films and thus prevents the initiation of biting behavior. The molecular barrier effect can be circumvented by placing water or human sweat as molecular attractants on the top (external) film surface. In this scenario, pristine graphene films continue to protect through puncture resistance-a mechanical barrier effect-while graphene oxide films absorb the water and convert to mechanically soft hydrogels that become nonprotective.


Graphite/chemistry , Insect Bites and Stings/prevention & control , Protective Clothing , Aedes , Animals , Female , Humans , Hydrogels , Nanoshells , Nanotechnology/methods , Silk/chemistry , Textiles , Water , Wearable Electronic Devices
12.
Ann Transl Med ; 6(11): 214, 2018 Jun.
Article En | MEDLINE | ID: mdl-30023377

The conventional two-dimensional (2D) and glasses-assisted three-dimensional (3D) display systems can no longer meet the clinical requirements with the development of minimally invasive video-assisted thoracoscopic surgery (VATS). The glasses-free 3D display technology adopts both lenticular lens technology and face-tracking and -positioning systems and offers high brightness, large viewing area, and strong anti-interference capability, which significantly improve the operator's experience. When applied in VATS, it has many advantages including good display depth, convenience for performing complex and fine operations, and short learning curve. This novel display technology will greatly promote the development of minimally invasive surgery.

13.
Adv Mater ; 30(4)2018 Jan.
Article En | MEDLINE | ID: mdl-29215171

There is great interest in exploiting van der Waals gaps in layered materials as confinement reaction vessels to template the synthesis of new nanosheet structures. The gallery spaces in multilayer graphene oxide, for example, can intercalate hydrated metal ions that assemble into metal oxide films during thermal oxidation of the sacrificial graphene template. This approach offers limited control of structure, however, and does not typically lead to 2D atomic-scale growth of anisotropic platelet crystals, but rather arrays of simple particles directionally sintered into porous sheets. Here, a new graphene-directed assembly route is demonstrated that yields fully dense, space-filling films of tiled metal oxide platelet crystals with tessellated structures. The method relies on colloidal engineering to produce a printable "metallized graphene ink" with accurate control of metal loading, grain size/porosity, composition, and micro/nanomorphologies, and is capable of achieving higher metal-carbon ratio than is possible by intercalation methods. These tiled structures are sufficiently robust to create free standing papers, complex microtextured films, 3D shapes, and metal oxide replicas of natural biotextures.

14.
ACS Nano ; 12(1): 234-244, 2018 01 23.
Article En | MEDLINE | ID: mdl-29165991

A wide range of technologies requires barrier films to impede molecular transport between the external environment and a desired internal microclimate. Adding stretchability to barrier films would enable the applications in packaging, textiles, and flexible devices, but classical barrier materials utilize dense, ordered molecular architectures that easily fracture under small tensile strain. Here, we show that textured graphene-based coatings can serve as ultrastretchable molecular barriers expandable to 1500% areal strain through programmed unfolding that mimics the elasticity of polymers. These coatings retain barrier function under large deformation and can be conformally applied to planar or curved surfaces, where they are washfast and mechanically robust to cycling. These graphene-polymer bilayer structures also function as sensors or actuators by transducing chemical stimuli into mechanical deformation and electrical resistance change through asymmetric polymer swelling. These results may enable multifunctional fabrics that integrate chemical protection, sensing, and actuation, with further applications as selective barriers, membranes, stretchable electronics, or soft robotics.


Elasticity , Graphite/chemistry , Membranes, Artificial , Polymers/chemistry , Diffusion , Electronics/instrumentation , Humans , Models, Molecular , Nanostructures/chemistry , Protective Clothing , Robotics/instrumentation , Textiles , Wearable Electronic Devices
15.
Nanoscale ; 9(17): 5398-5403, 2017 May 04.
Article En | MEDLINE | ID: mdl-28426079

This letter demonstrates a simple method to achieve high-yields of 1H semiconducting MoS2 monolayers in concentrated, colloidally-stable aqueous suspension. The method is based on oxidation suppression during the hydrothermal processing step used for metal-to-semiconductor phase reversion. Accompanying DFT calculations on elementary steps in the MoS2 wet oxidation reaction suggest that a two-site corrosion mechanism is responsible for the observed high reactivity and low stability of 1T metallic MoS2.

16.
Adv Mater ; 29(23)2017 Jun.
Article En | MEDLINE | ID: mdl-28244157

The creation of three-dimensional (3D) structures from two-dimensional (2D) nanomaterial building blocks enables novel chemical, mechanical or physical functionalities that cannot be realized with planar thin films or in bulk materials. Here, we review the use of emerging 2D materials to create complex out-of-plane surface topographies and 3D material architectures. We focus on recent approaches that yield periodic textures or patterns, and present four techniques as case studies: (i) wrinkling and crumpling of planar sheets, (ii) encapsulation by crumpled nanosheet shells, (iii) origami folding and kirigami cutting to create programmed curvature, and (iv) 3D printing of 2D material suspensions. Work to date in this field has primarily used graphene and graphene oxide as the 2D building blocks, and we consider how these unconventional approaches may be extended to alternative 2D materials and their heterostructures. Taken together, these emerging patterning and texturing techniques represent an intriguing alternative to conventional materials synthesis and processing methods, and are expected to contribute to the development of new composites, stretchable electronics, energy storage devices, chemical barriers, and biomaterials.

17.
ACS Nano ; 10(12): 10869-10879, 2016 12 27.
Article En | MEDLINE | ID: mdl-28024363

Confined assembly in the intersheet gallery spaces of two-dimensional (2D) materials is an emerging templating route for creation of ultrathin material architectures. Here, we demonstrate a general synthetic route for transcribing complex wrinkled and crumpled topographies in graphene oxide (GO) films into textured metal oxides. Intercalation of hydrated metal ions into textured GO multilayer films followed by dehydration, thermal decomposition, and air oxidation produces Zn, Al, Mn, and Cu oxide films with high-fidelity replication of the original GO textures, including "multi-generational", multiscale textures that have been recently achieved through extreme graphene compression. The textured metal oxides are shown to consist of nanosheet-like aggregates of interconnected particles, whose mobility, attachment, and sintering are guided by the 2D template. This intercalation templating approach has broad applicability for the creation of complex, textured films and provides a bridging technology that can transcribe the wide variety of textures already realized in graphene into insulating and semiconducting materials. These textured metal oxide films exhibit enhanced electrochemical and photocatalytic performance over planar films and show potential as high-activity electrodes for energy storage, catalysis, and biosensing.

18.
Bioorg Med Chem ; 24(21): 5047-5051, 2016 11 01.
Article En | MEDLINE | ID: mdl-27670097

The two lysine (Lys) residues in the human immunodeficiency virus trans-activator of transcription protein (HIV Tat protein) basic region (residues 47-57) are crucial for two bioactivities: RNA recognition and cellular uptake. Since the post-translational modifications of these two Lys residues affect the biological function of the Tat protein, we investigated the effect of methylation and acetylation of Lys50 and Lys51 in Tat-derived peptides on the two bioactivities. Tat-derived peptides, in which each lysine was replaced with a methylated- or acetylated-Lys, were synthesized by solid phase peptide synthesis. TAR RNA recognition of the peptides was studied by electrophoretic mobility shift assays. Cellular uptake of the peptides into Jurkat cells was determined by flow cytometry. Our results showed that acetylation of either Lys residue attenuated both bioactivities. In contrast, the effect of Lys methylation on the bioactivities depended on position and number of methyl groups. These findings should be useful for the development of functional molecules containing ammonium groups for RNA recognition to affect biological processes and for cellular uptake for drug delivery.


Lysine/metabolism , Peptides/metabolism , RNA, Viral/metabolism , tat Gene Products, Human Immunodeficiency Virus/metabolism , Acetylation , Humans , Hydrogen Bonding , Jurkat Cells , Lysine/chemistry , Methylation , Peptides/chemical synthesis , Peptides/chemistry , RNA, Viral/chemistry , tat Gene Products, Human Immunodeficiency Virus/chemistry
...