Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Nat Commun ; 15(1): 392, 2024 Jan 09.
Article En | MEDLINE | ID: mdl-38195718

Highly stretchable porous materials are promising for flexible electronics but their fabrication is a great challenge. Herein, several kinds of highly stretchable conductive porous elastomers with low or negative Poisson's ratios are achieved by uniaxial, biaxial, and triaxial hot-pressing strategies. The reduced graphene oxide/polymer nanocomposite elastomers with folded porous structures obtained by uniaxial hot pressing exhibit high stretchability up to 1200% strain. Furthermore, the meta-elastomers with reentrant porous structures combining high biaxial (or triaxial) stretchability and negative Poisson's ratios are achieved by biaxial (or triaxial) hot pressing. The resulting elastomer-based wearable strain sensors exhibit an ultrawide response range (0-1200%). The materials can be applied for smart thermal management and electromagnetic interference shielding, which are achieved by regulating the porous microstructures via stretching. This work provides a versatile strategy to highly stretchable and negative-Poisson-ratio porous materials with promising features for various applications such as flexible electronics, thermal management, electromagnetic shielding, and energy storage.

2.
Small ; 20(8): e2305925, 2024 Feb.
Article En | MEDLINE | ID: mdl-37821402

Highly sensitive self-powered stretchable electronic skins with the capability of detecting broad-range dynamic and static pressures are urgently needed with the increasing demands for miniaturized wearable electronics, robots, artificial intelligence, etc. However, it remains a great challenge to achieve this kind of electronic skins. Here, unprecedented battery-type all-in-one self-powered stretchable electronic skins with a novel structure composed of pressure-sensitive elastic vanadium pentoxide (V2 O5 ) nanowire-based porous cathode, elastic porous polyurethane /carbon nanotube/polypyrrole anode, and polyacrylamide ionic gel electrolyte are reported. A new battery-type self-powered pressure sensing mechanism involving the output current variation caused by the resistance variation of the electrodes and electrolytes under external pressure is revealed. The battery-type self-powered electronic skins combining high sensitivity, broad response range (1.8 Pa-1.5 MPa), high fatigue resistance, and excellent stability against stretching (50% tensile strain) are achieved for the first time. This work provides a new and versatile battery-type sensing strategy for the design of next-generation all-in-one self-powered miniaturized sensors and electronic skins.

3.
Small ; 20(24): e2307602, 2024 Jun.
Article En | MEDLINE | ID: mdl-38150669

Transparent aerogels are ideal candidates for thermally insulating windows, solar thermal receivers, electronics, etc. However, they are usually prepared via energy-consuming supercritical drying and show brittleness and low tensile strength, significantly restricting their practical applications. It remains a great challenge to prepare transparent aerogels with high tensile strength and toughness. Herein, biomimetic transparent tough cellulose nanofiber-based nanocomposite aerogels with a layered nanofibrous structure are achieved by vacuum-assisted self-assembly combined with ambient pressure drying. The nacre-like layered homogeneous nanoporous structures can reduce light scattering and effectively transfer stress and prevent stress concentration under external forces. The aerogels exhibit an attractive combination of excellent transparency and hydrophobicity, high compressive and tensile strengths, high toughness, excellent machinability, thermal superinsulation, and wide working temperature range (-196 to 230 °C). It is demonstrated that they can be used for superinsulating windows of buildings and high-efficient thermal management for electronics and human bodies. In addition, a prototype of transparent flexible aerogel-based triboelectric nanogenerator is developed. This work provides a promising pathway toward transparent tough porous materials for energy saving/harvesting, thermal management, electronics, sensors, etc.

...